Giving a "tandem" boost to solar-powered water splitting
Scientists combine two promising photocatalysts to obtain higher solar-to-hydrogen conversion efficiency and durability in a water splitting cell
Masashi Kato from Nagoya Institute of Technology
One way to do that is by splitting water via "artificial photosynthesis," a process in which materials called "photocatalysts" leverage solar energy to produce oxygen and hydrogen from water. However, the available photocatalysts are not yet where they need to be to make solar-powered water splitting economically feasible and scalable. To get them there, two main problems should be solved: the low solar-to-hydrogen (STH) conversion efficiency and the insufficient durability of photoelectrochemical water splitting cells.
At Nagoya Institute of Technology, Japan, Professor Masashi Kato and his colleagues have been working hard to take photocatalysts to the next level by exploring new materials and their combinations and gaining insight into the physicochemical mechanisms that underlie their performances. In their latest study published in Solar Energy Materials and Solar Cells, Dr. Kato and his team have now managed to do just that by combining titanium oxide (TiO2) and p-type cubic SiC (3C-SiC), two promising photocatalyst materials, into a tandem structure that makes for a highly durable and efficient water splitting cell.
The tandem structure explored by the team in their study has both the photocatalyst materials in series, with a semi-transparent TiO2 operating as a photoanode and 3C-SiC as a photocathode. Since each material absorbs solar energy at different frequency bands, the tandem structure can markedly increase the conversion efficiency of the water splitting cell by allowing more of the incoming light to excite charge carriers and generate the necessary currents.
The team measured the effects of applied external voltage and pH on the photocurrents generated in the cell and then conducted water splitting experiments under different light intensities. They also measured the amounts of oxygen and hydrogen generated. The results were highly encouraging, as Dr. Kato remarks: "The maximum applied-bias photon-to-current efficiency measured was 0.74%. This value, coupled with the observed durability of about 100 days, puts our water splitting system among the best currently available." Moreover, the findings of this study hinted at some of the potential mechanisms behind the observed performance of the proposed tandem structure.
Further research is needed to continue improving photoelectrochemical water splitting systems until they become widely applicable. Still, this study is clearly a step towards a clean future. "Our contributions shall accelerate the development of artificial photosynthesis technologies, which will generate energy resources directly from solar light. Thus, our findings may assist in the realization of sustainable societies," says Dr. Kato, speaking of his vision.
Original publication
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.