Berkeley scientists discover inexpensive metal catalyst for generating hydrogen from water
"Our new proton reduction catalyst is based on a molybdenum-oxo metal complex that is about 70 times cheaper than platinum, today's most widely used metal catalyst for splitting the water molecule," said Hemamala Karunadasa, one of the co-discoverers of this complex. "In addition, our catalyst does not require organic additives, and can operate in neutral water, even if it is dirty, and can operate in sea water, the most abundant source of hydrogen on earth and a natural electrolyte. These qualities make our catalyst ideal for renewable energy and sustainable chemistry."
Karunadasa holds joint appointments with Berkeley Lab's Chemical Sciences Division and UC Berkeley's Chemistry Department. She is the lead author of a paper describing this work that appears in Nature, titled "A molecular molybdenum-oxo catalyst for generating hydrogen from water." Co-authors of this paper were Christopher Chang and Jeffrey Long, who also hold joint appointments with Berkeley Lab and UC Berkeley. Chang, in addition, is also an investigator with the Howard Hughes Medical Institute (HHMI).
Nature has developed extremely efficient water-splitting enzymes – called hydrogenases – for use by plants during photosynthesis, however, these enzymes are highly unstable and easily deactivated when removed from their native environment. Human activities demand a stable metal catalyst that can operate under non-biological settings. Metal catalysts are commercially available, but they are low valence precious metals whose high costs make their widespread use prohibitive. For example, platinum, the best of them, costs some $2,000 an ounce.
"The basic scientific challenge has been to create earth-abundant molecular systems that produce hydrogen from water with high catalytic activity and stability," Chang says. "We believe our discovery of a molecular molybdenum-oxo catalyst for generating hydrogen from water without the use of additional acids or organic co-solvents establishes a new chemical paradigm for creating reduction catalysts that are highly active and robust in aqueous media."
The molybdenum-oxo complex that Karunadasa, Chang and Long discovered is a high valence metal with the chemical name of (PY5Me2)Mo-oxo. In their studies, the research team found that this complex catalyzes the generation of hydrogen from neutral buffered water or even sea water with a turnover frequency of 2.4 moles of hydrogen per mole of catalyst per second.
Long says, "This metal-oxo complex represents a distinct molecular motif for reduction catalysis that has high activity and stability in water. We are now focused on modifying the PY5Me ligand portion of the complex and investigating other metal complexes based on similar ligand platforms to further facilitate electrical charge-driven as well as light-driven catalytic processes. Our particular emphasis is on chemistry relevant to sustainable energy cycles."
Other news from the department science
These products might interest you
ERBAdry by CARLO ERBA Reagents
Anhydrous solvents from CARLO ERBA Reagents in a clever redesign
ERBAdry series impresses with the latest generation of septa and sealing caps
Thermo Scientific™ Dionex™ ASE™ 150 or 350 Accelerated Solvent Extractor systems by Thermo Fisher Scientific
Accelerated Solvent Extraction (ASE) – Maximize results and reduce errors in food analysis!
More extractions in less time using less solvent
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.