The secret of catalysts that increase fuel cell efficiency
Research team reveals the phase transition and metal ex-solution phenomena to increase the catalytic activity
POSTECH
A joint research team of Professor Jeong Woo Han and Ph.D. candidate Kyeounghak Kim of POSTECH's Department of Chemical Engineering, and Professor Guntae Kim of UNIST have uncovered the mechanism by which PBMO - a catalyst used in fuel cells - is transformed from perovskite structure to layered structure with nanoparticles ex-solution to the surface, confirming its potential as an electrode and a chemical catalyst. These research findings were recently published as an outside back cover paper of the Energy & Environmental Science, an international journal in the field of energy.
Catalysts are substances that enhance chemical reactions. PBMO (Pr0.5Ba0.5MnO3-δ), one of the catalysts for fuel cells, is known as a material that stably operates even when directly used as a hydrocarbon, not hydrogen. In particular, it exhibits high ionic conductivity as it changes to a layered structure under a reduction environment that loses oxygen. At the same time, the ex-solution phenomenon occurs in which the elements inside the metal oxide segregate to the surface.
This phenomenon occurs voluntarily under a reduction environment without any particular process. As the elements inside the material rise to the surface, the stability and performance of the fuel cell improve immensely. However, it was difficult to design the materials because the process through which these high-performance catalysts were formed was unknown.
Focusing on these features, the research team confirmed that the process goes through a progression of phase transition, particle ex-solution, and catalyst formation. This was proved using the first-principles calculation based on quantum mechanics and the in-situ XRD experiment that allows the observation of real-time crystal structural changes in materials. The researchers also confirmed that the oxidation catalyst developed this way displays up to four times better performance than the conventional catalysts, verifying that this study is applicable to various chemical catalysts.
"We were able to accurately understand the materials in atomic units that were difficult to confirm in previous experiments, and successfully demonstrated it thus overcoming the limitations of existing research by accurately understanding materials in atomic units, which were difficult to confirm in existing experiments, and successfully demonstrating them," explained Professor Jeong Woo Han who led the study. "Since these support materials and nanocatalysts can be used for exhaust gas reduction, sensors, fuel cells, chemical catalysts, etc., active research in numerous fields is anticipated in the future."
Original publication
Original publication
Kyeounghak Kim et al.; "Mechanistic insights into the phase transition and metal ex-solution phenomena of Pr0.5Ba0.5Mn0.85Co0.15O3−δ from simple to layered perovskite under reducing conditions and enhanced catalytic activity"; Energy Environ. Sci.; 2021,14, 873-882
Organizations
Other news from the department science
These products might interest you
Multi-Liter Hydrogen Gasgenerator by VICI
Laboratory hydrogen supply redefined
Up to 18 l/min hydrogen with 99.99997% purity and intuitive touchscreen control
CATLAB Catalysis and Thermal Analysis by Hiden Analytical
A system for catalyst characterisation, kinetic and thermodynamic measurements
Integrated Microreactor-Mass Spectrometer for Reaction Testing, TPD/R/O and Pulse Chemisorption.
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.