First Tellurium-free thermoelectric modules for power generation for Low Temperatur Application
The replacement of the scarce element Tellurium makes the devices cheaper while remaining the performance
IFW Dresden / R. Uhlemann
For more than 50 years, the commercial thermoelectric modules have relied on bismuth-telluride-based compounds because of their unmatched thermoelectric properties at temperatures associated with low-grade heat. However, the wider applicability of bismuth-telluride modules is severely limited by the scarcity of Tellurium with a concentration of <0.001 ppm in the Earth’s crust and an annual production of less than 500 metric tons. Therefore, it is imperative to develop thermoelectric modules from other, more abundant materials while retaining high performance in the low temperature range (<300°C).
Researchers from the Leibniz-Institute for Solid State and Materials Research Dresden, in collaboration with Prof. Zhifeng Ren at the Texas Center for Superconductivity (TcSUH) at the University of Houston, now developed for the first time a highly efficient Tellurium-free thermoelectric generator based on Magnesium-Antimony compounds, by using a simple, versatile, and thus scalable processing routine. These new thermoelectric generators achieve an efficiency of 7.0% at a temperature difference of 250°C and thus even exceed the efficiency of commercial bismuth telluride-based thermoelectric generators (~5.2%). This work marks a feasible, sustainable alternative to Bismuth-telluride-based thermoelectric modules and will spur a wider application of thermoelectric technology in converting low-grade heat to electricity and thermoelectric coolers.
Original publication
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.