More sustainable recycling of plastics
Chemists have developed a method for more sustainable recycling of polyethylene-like plastics
Copyright: AG Mecking, University of Konstanz
Mechanical recycling vs. chemical recycling
“The direct re-utilization of plastics is often hampered by the fact that, in practice, mechanical recycling only functions to a limited degree – because the plastics are contaminated and mixed with additives, which impairs the properties of the recycled materials”, Stefan Mecking explains. “Chemical recycling” is an alternative: Via a chemical process, used plastic is broken down into its molecular building blocks, which can then be converted into new plastic.
Limitations of chemical recycling of polyethylene
Specifically in the case of polyethylene – the most widely used plastic – chemical recycling is difficult. On a molecular level, plastics are made up of long molecular chains. “Polymer chains of polyethylene are very stable and not easily reversed back into small molecules”, Stefan Mecking explains. Temperatures exceeding 600° Celsius are required, making the procedure energy-consuming. At the same time, the recovery rate is limited (in some cases less than ten per cent of the starting material).
How chemical recycling of polyethylene can be made more sustainable
Stefan Mecking and his team report on a method that makes a more energy-efficient chemical recycling of polyethylene-like plastics possible, coupled with a very high recovery rate of around 96 per cent of the starting materials. To do so, the chemists used “breaking-points” on a molecular level enabling a deconstruction of the chain into smaller molecular building blocks. “Key for our method are polymers with a low density of predetermined breaking-points in the polyethylene chain, so that the crystalline structure and material properties are not compromised”, Stefan Mecking explains and adds: “This type of materials is also very suitable for 3D printing.”
Stefan Mecking’s research team demonstrated this chemical recycling on polyethylene-like plastics based on plant oil. The recycling stage requires temperatures of only about 120 degrees. Furthermore, the chemists also performed this recycling method on mixed plastics as they occur in waste streams. The properties of the recycled materials are on a par with those of the starting material. “Recyclability is an important aspect for future technologies based on plastics. Re-utilizing such valuable materials as efficiently as possible makes sense. With our research we want to contribute to making chemical recycling of plastics more sustainable and effective“, Stefan Mecking resumes.
Original publication
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.