Crystal structures in super slow motion
Researchers first to succeed in filming a phase transition with extremely high spatial and temporal resolution
Dr Murat Sivis
Dr Florian Sterl (Sterltech Optics)
The team, which includes Thomas Danz and Professor Claus Ropers, took advantage of an unusual property of a material made up of atomically thin layers of sulphur and tantalum atoms. At room temperature, its crystal structure is distorted into tiny wavelike structures - a "charge-density wave" is formed. At higher temperatures, a phase transition occurs in which the original microscopic waves suddenly disappear. The electrical conductivity also changes drastically, an interesting effect for nano-electronics.
In their experiments, the researchers induced this phase transition with short laser pulses and recorded a film of the charge-density wave reaction. "What we observe is the rapid formation and growth of tiny regions where the material was switched to the next phase," explains first author Thomas Danz from Göttingen University. "The Ultrafast Transmission Electron Microscope developed in Göttingen offers the highest time resolution for such imaging in the world today." The special feature of the experiment lies in a newly developed imaging technique, which is particularly sensitive to the specific changes observed in this phase transition. The Göttingen physicists use it to take images that are composed exclusively of electrons that have been scattered by the crystal's waviness.
Their cutting-edge approach allows the researchers to gain fundamental insights into light-induced structural changes. "We are already in a position to transfer our imaging technique to other crystal structures," says Professor Claus Ropers, leader of Nano-Optics and Ultrafast Dynamics at Göttingen University and Director at the MPI for Biophysical Chemistry. "In this way, we not only answer fundamental questions in solid-state physics, but also open up new perspectives for optically switchable materials in future, intelligent nano-electronics."
Original publication
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.