Attosecond boost for electron microscopy
Attosecond time resolution in a transmission electron microscope by combining it with a continuous-wave laser achieved
Electron microscopes provide deep insight into the smallest details of matter and can reveal, for example, the atomic configuration of materials, the structure of proteins or the shape of virus particles. However, most materials in nature are not static and rather interact, move and reshape all the time. One of the most common phenomena is the interaction between light and matter, which is ubiquitous in plants as well as in optical components, solar cells, displays or lasers. These interactions – which are defined by electrons being moved around by the field cycles of a light wave – happen at ultrafast time scales of femtoseconds (10-15 seconds) or even attoseconds (10-18 seconds, a billionth of a billionth of a second). While ultrafast electron microscopy can provide some insight into femtosecond processes, it has not been possible, until now, to visualize the reaction dynamics of light and matter occurring at attosecond speeds.

(left) A glance inside an attosecond transmission electron microscope. (right) A continuous-wave laser (red) intersects with an electron beam (blue) at a membrane. The laser light bunches the electrons (blue wavelet) into an attosecond pulse train (modulated wavelet).
(left) Andrey Ryabov, LMU Munich; (right) Mikhail Volkov, University of Konstanz
Now, a team of physicists from the University of Konstanz and Ludwig-Maximilians-Universität München have succeeded in combining a transmission electron microscope with a continuous-wave laser to create a prototypical attosecond electron microscope (A-TEM). The results are reported in the latest issue of Science Advances.
Modulating the electron beam
“Basic phenomena in optics, nanophotonics or metamaterials happen at attosecond times, shorter than a cycle of light”, explains Professor Peter Baum, lead author on the study and head of the Light and Matter research group at University of Konstanz’s Department of Physics. “To be able to visualize ultrafast interactions between light and matter requires a time resolution below the oscillation period of light”. Conventional transmission electron microscopes use a continuous electron beam to illuminate a specimen and create an image. To achieve attosecond time resolution, the team led by Baum uses the rapid oscillations of a continuous-wave laser to modulate the electron beam inside the microscope in time.
Ultra-short electron pulses
Key to their experimental approach is a thin membrane which the researchers use to break the symmetry of the optical cycles of the laser wave. This causes the electrons to accelerate and decelerate in rapid succession. “As a result, the electron beam inside the electron microscope is transformed into a series of ultrashort electron pulses, shorter than half an optical cycle of the laser light”, says first author Andrey Ryabov, a postdoctoral researcher on the study. Another laser wave, which is split from the first one, is used to excite an optical phenomenon in a specimen of interest. The ultrashort electron pulses then probe the sample and its reaction to the laser light. By scanning the optical delay between the two laser waves, the researchers are then able to obtain attosecond resolution footage of the electromagnetic dynamics inside the specimen.
Simple modifications, large impact
“The main advantage of our method is that we are able to use the available continuous electron beam inside the electron microscope rather than having to modify the electron source. This means that we have a million times more electrons per second, basically the full brightness of the source, which is key to any practical applications”, continues Ryabov. Another advantage is that the necessary technical modifications are rather simple and do not require electron gun modifications.
As a result, it is now possible to achieve attosecond resolution in a whole range of space-time imaging techniques such as time-resolved holography, waveform electron microscopy or laser-assisted electron spectroscopy, amongst others. In the long term, attosecond electron microscopy may help to uncover the atomistic origins of light-matter interactions in complex materials and biological substances.
Original publication
Other news from the department science

Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents

New technique provides detailed views of metals’ crystal structure - Method uses readily available tools to quickly determine materials’ properties.

A thin ribbon of flexible electronics can monitor health, infrastructure
Solar supercapacitor could power future of wearable sensors

Scientist Discovers New Oxidation State of Rhodium - Interdisciplinary collaboration between physics and chemistry enables rare finding
Category:Diphenylbutylpiperidine_derivatives

Self-disposing supramolecular materials with a tunable lifetime - Supramolecular materials with a time switch
Outstanding Results on Research in Synchrotron Radiation rewarded

BASF to increase capacity for plastic additives in Europe - Capacity expansion will increase production of HALS light stabilizers in Italy and Germany
PerkinElmer and Labindia Launch Direct Sales and Service Operation in India
Tolbutamide

Predator-prey made simple - New method simplifies studies of predator-prey interactions and other 'bistable' systems
