New 3D chirality discovered and synthetically assembled
©Science China Press
©Science China Press
There is a recent report on the fifth chirality of multi-layer 3D chirality of C2- and/or pseudo C2-symmetry and on its first chemical synthesis by Professor Guigen Li's labs at Texas Tech University and Nanjing University in collaboration with Professor Tao Jiang at Ocean University of China. As confirmed by X-ray structural analysis that almost parallel arrangement consisting of three layers: top, middle and bottom layers, exists in this multi-layer 3D chirality. It shows the top and bottom layers restrict each other from free chemical bond rotation, i.e. if either top or bottom layer is removed, this chirality would not exist due to the resulting racemization. Therefore, the new 3D chirality is differentiated from any documented planar or axial chirality.
Retro-synthetic analysis (RSA) established by Nobel Laureate, E. J. Corey at Harvard and the Suzuki-Miyaura cross coupling invented by Nobel Laureate, A. Suzuki and his coworker N. Miyaura in Japan played important roles in the discovery and synthesis of the multi-layer 3D chirality of C2-symmetry. Double cross-couplings invented by S. Buchwald at MIT and J. Hartwig at UC Berkeley enabled assembling multi-layer 3D chirality of pseudo C2-symmetry.
It is very intriguing that the resulting chiral multi-layer 3D products displayed macro chirality phenomenon which can be directly observed by human eyes without an aid of microscopic devices (Image 1a). When solutions containing 3D samples were slowly evaporated by being exposed to air for a few days, anti-clockwise spiral loops were formed in glass containers. These spiral loops shine with green color when it is irradiated under UV light at 365 nm. It is also very interesting when a capped NMR tube containing a CDCl3 solution of a 3D compound was stored at room temperature for over several weeks, right-handed spiro textile-shaped solids were formed inside NMR tubes. Nearly all 3D products displayed strong fluorescence even in their solid forms under UV light at 365 nm as shown in image 1.
The change of functional groups in multi-layer 3D chiral molecules led to their luminescence color changes from gold color to dark green (Image 2a). They also displayed strong aggregation-induced emission (AIE) (Image 2-(c)) in which the higher fraction of water, the stronger the luminescence has been confirmed qualitatively and quantitatively. Several of such 3D molecules have showed unusually high optical rotation, indicating their great potential serving for optical material science and technology.