From 2D crystal to 1D wire
Unexpected behaviour of the material
© UDE
"Low-dimensional systems are en vogue", according to Professor Michael Horn-von Hoegen, experimental physicist in the UDE Collaborative Research Centre 1242 "Non-Equilibrium Dynamics of Condensed Matter in the Time Domain". For restricting a system of three dimensions to just one creates the possibility of discovering new properties in the material.
Therefore, the scientists used stepped surfaces to allow atomic wires to form in a self-organized way by cutting a silicon crystal at an angle of 12 degrees. Careful polishing produces even steps with a height of exactly one atom – as in the attempt to build a slanted plane using only Lego bricks of the same size. The edges of the steps are formed by silicon atoms, with two rows of gold atoms deposited behind them.
Atoms shift
The researchers are now interested in every third silicon atom in this row at the edge, because it has special properties: At very low temperatures, these atoms are arranged in a regular lattice (viewed across the steps), i.e. in a two-dimensional crystal structure. And now heat is added, a term that is quite elastic in physics: from previously -223°C, the system is now heated to around -123°C. This thermal energy causes the regular distances between the special silicon atoms to break up. They are now sometimes two, sometimes four atoms apart.
This way, independent chains of atoms are formed, which run along the edges of the steps. The fact that physicists can explain this phenomenon in detail today is due in large part to the theorist Prof. Björn Sothmann: His calculations explained what the pure experiment could not reveal.
"Here, something new emerges almost out of nowhere," Horn-von Hoegen summarises. And the result also contradicts previous expectations: "2D order at low temperatures, one-dimensional structures when it gets warmer; you don't get this kind of thing from any other material. Now we want to find out whether this also applies to other systems – maybe even at room temperature".
Original publication
Most read news
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.