A megalibrary of nanoparticles
A simple, modular chemical approach could produce over 65,000 different types of complex nanorods
Schaak Laboratory, Penn State
"There is a lot of interest in the world of nanoscience in making nanoparticles that combine several different materials--semiconductors, catalysts, magnets, electronic materials," said Raymond E. Schaak, DuPont Professor of Materials Chemistry at Penn State and the leader of the research team. "You can think about having different semiconductors linked together to control how electrons move through a material, or arranging materials in different ways to modify their optical, catalytic, or magnetic properties. We can use computers and chemical knowledge to predict a lot of this, but the bottleneck has been in actually making the particles, especially at a large-enough scale so that you can actually use them."
The team starts with simple nanorods composed of copper and sulfur. They then sequentially replace some of the copper with other metals using a process called "cation exchange." By altering the reaction conditions, they can control where in the nanorod the copper is replaced--at one end of the rod, at both ends simultaneously, or in the middle. They can then repeat the process with other metals, which can also be placed at precise locations within the nanorods. By performing up to seven sequential reactions with several different metals, they can create a veritable rainbow of particles--over 65,000 different combinations of metal sulfide materials are possible.
"The real beauty of our method is its simplicity," said Benjamin C. Steimle, a graduate student at Penn State and the first author of the paper. "It used to take months or years to make even one type of nanoparticle that contains several different materials. Two years ago we were really excited that we could make 47 different metal sulfide nanoparticles using an earlier version of this approach. Now that we've made some significant new advances and learned more about these systems, we can go way beyond what anyone has been able to do before. We are now able to produce nanoparticles with previously unimaginable complexity simply by controlling temperature and concentration, all using standard laboratory glassware and principles covered in an Introductory Chemistry course."
"The other really exciting aspect of this work is that it is rational and scalable," said Schaak. "Because we understand how everything works, we can identify a highly complex nanoparticle, plan out a way to make it, and then go into the laboratory and actually make it quite easily. And, these particles can be made in quantities that are useful. In principle, we can now make what we want and as much as we want. There are still limitations, of course--we can't wait until we are able to do this with even more types of materials--but even with what we have now, it changes how we think about what is possible to make."
Most read news
Other news from the department science
These products might interest you
NANOPHOX CS by Sympatec
Particle size analysis in the nano range: Analyzing high concentrations with ease
Reliable results without time-consuming sample preparation
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
DynaPro Plate Reader III by Wyatt Technology
Screening of biopharmaceuticals and proteins with high-throughput dynamic light scattering (DLS)
Efficiently characterize your sample quality and stability from lead discovery to quality control
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.