Microtube with Built-In Pump
Rapid controlled transport of water droplets by sunlight-powered pump
© Wiley-VCH
Modern molecular analytic and diagnostic methods generally work with tiny amounts of fluid. Microfluidic technology has also been used in synthetic processes in which reactions occur in microchannels and miniaturized instruments. In order to precisely transport such small volumes from one place to another, scientists at Tsinghua University and Beihang University in Beijing, China, have developed a “microtube pump”.
The pump consists of a polymer tube with a diameter of about 500 µm. It is made of two layers: The outer layer is polydimethylsiloxane (PDMS), which the researchers; led by Chun Li, Zhiping Xu, and Liangti Qu; mixed with reduced graphene oxide (rGO), a carbon-based nanomaterial that absorbs sunlight particularly well. This produces heat that is transmitted to the inner layer of the hose wall, which is made of poly(N-isopropylacrylamide) (PNIPAm), a polymer that forms a hydrogel at room temperature. Its polymer chains are knotted into a network that swells as it absorbs water. Above about 32 °C, the hydrogel collapses into compact spheres that make the inner wall hydrophobic. This also causes the inner layer to shrink, making the inner diameter of the tube larger.
Irradiating the tube at only one end forms a gradient of wettability in the inner wall. In addition, the tube’s geometry becomes asymmetric because the inner diameter only increases at the irradiated end. Capillary forces cause water droplets to move toward the smaller diameter end – the end that is not irradiated. The decreased wettability of the inner wall at the irradiated end further accelerates the water droplet. The synergy of these two mechanisms results in high speeds, which can be controlled by changing the intensity of the irradiation. After irradiation, the tube cools off very quickly. The hydrogel returns to its original state, ready to be irradiated again.
The flexible material allows for production of meters-long straight or bent tubes that can transport water continuously over long distances. It is also possible to make branched systems that can be irradiated simultaneously or in sequence at different locations. This, for example, allows for individual droplets containing different reagents to be transported in a specific order and combined – and could be used in diagnostic tests or when water droplets serve as microreactors for chemical reactions.
Original publication
Other news from the department science
These products might interest you
Typ CNF / Typ CAM by Hermetic-Pumpen
Reliable pump technology for hazardous applications
Shaft seal-free pumps for maximum reliability and safety
Peristaltic Pumps by AHF analysentechnik
Reliable and Low-pulsation Transport of Liquids in Laboratory Analysis
AZURA Analytical HPLC by KNAUER
Maximize your analytical efficiency with customized HPLC system solutions
Let your application define your analytical system solution
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.