Researchers develop a solid material with mobile particles that react to the environment
INM
How does one get solid particles to move inside a solid material? „You rarely want this to happen in steel, concrete, or plastics, because free motion usually implies a weak spot in the material. In our active nanocomposites, particles are decoupled from the main material inside small compartments, while the rest remains stable,” says Tobias Kraus, Head of the Structure Formation Group at INM.
The research team used a trick: like raisins in a pudding, they distributed small liquid droplets in a polymer. The droplets contained gold nanoparticles that move freely inside each droplet, something they could not do in the solid: “The particles are now free to either agglomerate or freely move in the entire droplet. The nanocomposite’s color depends on how far the nanoparticles are from each other, it changes from ruby red to grey-violet in our example. The particles can separate again, and the color change is fully reversible,” explains Professor Kraus.
The naked eye can discern neither the droplets nor the nanoparticles inside. The entire composite is translucent; it simply changes its color depending on temperature. “The result is relevant for applications that require transparent materials. We envision coating it onto clear films, for example,” says the material scientist Kraus.
In the current publication, the particles agglomerate depending on temperature. In the future, the scientists want the nanocomposite to react to chemical stimuli. „One may use this to directly visualize high Vitamin C concentrations or toxins, for example,” ponders Kraus.
Original publication
Other news from the department science
These products might interest you
NANOPHOX CS by Sympatec
Particle size analysis in the nano range: Analyzing high concentrations with ease
Reliable results without time-consuming sample preparation
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
DynaPro Plate Reader III by Wyatt Technology
Screening of biopharmaceuticals and proteins with high-throughput dynamic light scattering (DLS)
Efficiently characterize your sample quality and stability from lead discovery to quality control
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.