Measuring the Nanoworld
Researchers establish a benchmark for accurate determination of internal dimensions within individual molecules
Hugo Sanabria, Nandakumar Chedikulathu Vishnu/Universität Clemson
FRET works similarly to proximity sensors in cars: the closer the object is, the louder or more frequent the beeps become. Instead of relying on acoustics, FRET is based on proximity-dependent changes in the fluorescent light emitted from two dyes and is detected by sensitive microscopes. The technology has revolutionised the analysis of the movement and interactions of biomolecules in living cells.
Hugel and colleagues envisioned that once a FRET standard had been established, unknown distances could be determined with high confidence. By working together, the 20 laboratories involved in the study refined the method in such a way that scientists using different microscopes and analysis software obtained the same distances, even in the sub-nanometer range.
“The absolute distance information that can be acquired with this method now enables us to accurately assign conformations in dynamic biomolecules, or even to determine their structures”, says Thorsten Hugel, who headed the study together with Dr. Tim Craggs (University of Sheffield/Great-Britain), Prof. Dr. Claus Seidel (University of Düsseldorf) and Prof. Dr. Jens Michaelis (University of Ulm). Such dynamic structural information will yield a better understanding of the molecular machines and processes that are the basis of life.
Original publication
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.