Scale-invariant resistivity in cuprates
One way to study the properties of cuprates in their normal ground state is to apply strong magnetic fields, which suppress superconductivity. However, according to Paula Giraldo-Gallo and colleagues, the direct effects of strong magnetic fields on the cuprates is poorly understood. Giraldo-Gallo et al. studied the electrical transport of a Lanthanum-based cuprate - La2-xSrxCuO4 - within strong magnetic fields and find that resistivity scales linearly with magnetic fields up to 80 tesla.
According to the authors, the linear-in-field resistivity mirrors the linear-in-temperature resistivity of the strange metal phase in more ways than one. Furthermore, the scale-invariant responses are distinct from the quadratic dependence well-known in of ordinary metals, indicating that each is governed by a non-quasipartical mechanism.
Most read news
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.