Core electron topologies in chemical bonding
Yokohama National University
Since the discovery of silicon and Wöhler's success in cheating nature by synthesizing organic compounds, Wöhler himself was among the first (in mid-19th century) to suggest replacing carbon by silicon in organic compounds. It became clear in the early 20th century that silicon does not have a chemistry similar to carbon, and dreams of silicon-based life only survive in science fiction. We know empirically that carbon has the capability to form a variety of unsaturated compounds, which silicon has not. However, the root cause of why only carbon has such capability has remained a mystery. Quantum chemical calculations of unprecedented accuracy carried out at YNU reveal that core electrons (which were not supposed to participate in chemical bonding) have a very different role in the unsaturated compounds of carbon and silicon. Carbon has the propensity to alter the topology (nodal structure) of its core electrons, which for C2 results to the formation of a torus like ring in the 1σg orbital formed of C1s electrons (see Figure). Si2 , however, maintains the spherical like core orbitals centered at each atomic site in all its molecules. This flexibility of carbon's core orbitals allows carbon to form a cornucopia of different valence bond structures, whereas silicon is restricted to bond structures orthogonal to the atomic like spherical core orbitals.
The impact of this discovery can be far reaching. Core electrons have thus far been assumed more or less inert, but perhaps it becomes necessary to reassess their contribution to chemical bonding -- at least in the case of unsaturated bonds. Finally, it is suggested that other elements, such as nitrogen, phosphorous, and fluorine, exhibit similar flexibility to modify their core electron topologies, and thus, exhibit similarly rich chemistries.
Original publication
Dr. Daisuke Yoshida, Assoc. Prof. Hannes Raebiger, Assoc. Prof. Ken‐ichi Shudo, Prof. Koichi Ohno; "Core Electron Topologies in Chemical Compounds: Case Study of Carbon versus Silicon"; Angew. Chem. Int. Ed.; 2018
Original publication
Dr. Daisuke Yoshida, Assoc. Prof. Hannes Raebiger, Assoc. Prof. Ken‐ichi Shudo, Prof. Koichi Ohno; "Core Electron Topologies in Chemical Compounds: Case Study of Carbon versus Silicon"; Angew. Chem. Int. Ed.; 2018
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.