Mimicking a sweet solution to mop up pollution

14-May-2018 - Saudi Arabia

A fast and safe method to prepare a 3D porous material that mimics the shape of a honeycomb could have broad applications from catalysis to drug delivery or for filtering air to remove pollutants or viruses.

S. Nunes

A transmission electron microscopy (TEM) image shows that the spherical compartments are interconnected through nanochannels.

S. Nunes

The repeating regular hierarchical structures are shown by scanning electron microscopy (SEM) images that illustrate how the honeycomb structure has formed at the surface of the material.

S. Nunes
S. Nunes

Both the lattice of a honeycomb and the symmetry of a diatom are complex living structures comprising patterns and shapes that have long provided inspiration for scientists. One recent application is to develop artificial hierarchical porous materials that are stable, yet have a large surface area and the ability to selectively extract materials. It has been difficult however to build these structures at the nanoscale due to their complexity and pattern repeatability across scales from the individual compartments to the whole structure.

A team from KAUST, led by Suzana Nunes, has proposed a simple method that, in just five minutes, can produce a flexible film with a complex hierarchical structure that has repeating patterns of interconnected, regularly shaped pores.

With experts in the Imaging and Characterization Core Lab, the team used the block copolymer called polystyrene-b-poly(tertbutyl acrylate) (PS-b-PtBA) to demonstrate this method. They tested various concentrations of PS-b-PtBA with different solvent mixtures, cast the resulting solutions on glass plates and evaporated them for different time periods to promote the nucleation and growth of cavities with highly porous interconnecting walls. The resulting film was then immersed in water to rinse off the solvent and halt the phase separation.

"By using this method we create an important platform to design artificial porous materials that replicate highly ordered porous and complex systems mimicking nature," explains research scientist and lead author Stefan Chisca. "These have potential use for separations, such as virus filtration, and for biological scaffolds, such as those used for bone regeneration."

Original publication

Chisca, Stefan and Musteata, Valentina-Elena and Sougrat, Rachid and Behzad, Ali Reza and Nunes, Suzana P.; "Artificial 3D hierarchical and isotropic porous polymeric materials"; Science Advances; 2018

Other news from the department science

These products might interest you

Eclipse

Eclipse by Wyatt Technology

FFF-MALS system for separation and characterization of macromolecules and nanoparticles

The latest and most innovative FFF system designed for highest usability, robustness and data quality

Spinsolve Benchtop NMR

Spinsolve Benchtop NMR by Magritek

Spinsolve Benchtop NMR

Spinsolve is a revolutionary multinuclear NMR spectrometer that provides the best performance

HYPERION II

HYPERION II by Bruker

FT-IR and IR laser imaging (QCL) microscope for research and development

Analyze macroscopic samples with microscopic resolution (5 µm) in seconds

FT-IR microscopes
Loading...

More news from our other portals

So close that even
molecules turn red...