Two better than one
Chemists advance sustainable battery technology
Utah State University chemists' efforts to develop alternative battery technology solutions are advancing.
Mary-Ann Muffoletto/USU
Tianbiao Liu, assistant professor in USU's Department of Chemistry and Biochemistry, and his team reported a new molecular design for aqueous organic redox flow batteries, known as AORFBs.
In addition to Liu, the paper's authors are USU postdoctoral researcher Jian Luo and doctoral students Bo Hu and Camden DeBruler.
"Organic redox flow batteries show promise for large-scale storage of renewable energy, as redox-active organic molecules are synthetically tunable, sustainable and inexpensive," Liu says. "We think they're a great alternative to existing technologies to meet growing demand for battery storage of environmentally friendly, renewable energy resources such as solar and wind power."
Such renewable energy sources present challenges to use, he says, because of their intermittent availability, unstable, heavy cycling and grid energy demands. These sources require frequent changing and discharging, as well as irregular, full recharging of a robust battery.
In their paper, team members describe use of synthetic chemistry to design a molecule, featuring a pi-electron conjugation unit, as a novel, two-electron storage anolyte for neutral total organic AORFBs.
"The two-electron structure is a unique feature of this design," Liu says. "It enables total use of organic materials based on abundantly available elements, such as nitrogen and hydrogen.
The chemists' demonstrated battery delivered a high voltage of 1.44 volts in an aqueous electrolyte, along with impressive energy efficiency and capacity retention.
"The design is very robust and very stable," Liu says.
Liu dedicated the paper to his master's mentor, Professor Mei Wang of China's Dalian University of Technology, on the occasion of her 62nd birthday.
"Dr. Wang is among the leaders in the field of renewable energy chemistry and was an inspiration to me," he says.
Original publication
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
See the theme worlds for related content
Topic World Battery Technology
The topic world Battery Technology combines relevant knowledge in a unique way. Here you will find everything about suppliers and their products, webinars, white papers, catalogs and brochures.
Topic World Battery Technology
The topic world Battery Technology combines relevant knowledge in a unique way. Here you will find everything about suppliers and their products, webinars, white papers, catalogs and brochures.
Topic world Synthesis
Chemical synthesis is at the heart of modern chemistry and enables the targeted production of molecules with specific properties. By combining starting materials in defined reaction conditions, chemists can create a wide range of compounds, from simple molecules to complex active ingredients.
Topic world Synthesis
Chemical synthesis is at the heart of modern chemistry and enables the targeted production of molecules with specific properties. By combining starting materials in defined reaction conditions, chemists can create a wide range of compounds, from simple molecules to complex active ingredients.