UV laser photolyses to enhance diamond growth
Researchers at the University of Nebraska-Lincoln, USA, reported on a new laser-enabled synthesis route to explore the advantages of laser photochemistry in practical material synthesis in a recent article in Light: Science & Applications. In this work, it is demonstrated that UV laser photolysis of hydrocarbon species altered the flame chemistry to promote the diamond growth rate and film quality. The authors found that the UV laser photolysis plays a key role in suppressing the formation of the side products, nondiamond carbons. This discovery suggests the great potential of the laser photolysis forsignificantly improving the synthesis of a broad range of technically important materials.
Original publication
Lisha Fan, Loic Constantin, Dawei Li, Lei Liu, Kamran Keramatnejad, Clio Azina, Xi Huang, Hossein Rabiee Golgir, Yao Lu, Zahra Ahmadi, Fei Wang, Jeffrey Shield, Bai Cui, Jean-Francois Silvain and Yong Feng Lu; "Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films"; Light: Science & Applications; 2018
Other news from the department science
Most read news
More news from our other portals
See the theme worlds for related content
Topic world Synthesis
Chemical synthesis is at the heart of modern chemistry and enables the targeted production of molecules with specific properties. By combining starting materials in defined reaction conditions, chemists can create a wide range of compounds, from simple molecules to complex active ingredients.
Topic world Synthesis
Chemical synthesis is at the heart of modern chemistry and enables the targeted production of molecules with specific properties. By combining starting materials in defined reaction conditions, chemists can create a wide range of compounds, from simple molecules to complex active ingredients.