New beryllium reference material for occupational safety monitoring

24-Sep-2009 - USA

Researchers at the National Institute of Standards and Technology (NIST), in collaboration with private industry and other government agencies, have produced a new reference material for beryllium. Beryllium, an exotic rare-earth metal used as a hardener in high-performance alloys and ceramics, can cause berylliosis — a chronic, incurable and sometimes fatal illness. The new reference material is expected to dramatically improve methods used to monitor workers' exposure and aid in contamination control as well as toxicological research.

The use of beryllium in manufacturing dates back to the advent of the atomic age. One of the scientists involved with the famous Chicago experiment known as Chicago Pile-1 to create the first artificial self-sustaining nuclear reaction in 1942 died of berylliosis in 1988. Aside from the nuclear industry, the unique properties of beryllium make it valuable in the manufacture of aircraft and supercolliders.

Beryllium dust can cause a condition characterized by chronic skin and/or respiratory inflammation resembling pneumonia in susceptible individuals and can increase the risk of lung cancers with long periods of exposure. Treating the particles as a threat, the body's immune system floods the affected area with white blood cells. The cells surround the beryllium particles and harden to form inflamed tissue nodules called granulomas. These granulomas can lodge under the skin or in lung tissue where they cause difficulty breathing and a host of other symptoms including fatigue, weight loss and muscle pain. The condition, although treatable, is incurable.

The new Standard Reference Material, Beryllium Oxide Powder (SRM 1877), consists of high-fired crystalline beryllium oxide that has been thoroughly characterized physically and chemically. The particles that make up the powder have an average diameter of about 200 nanometers and have been separated into aggregated clusters that will pass through a 20 mesh screen. NIST scientists Greg Turk and Mike Winchester used a high performance inductively coupled plasma optical emission spectrometry technique developed at NIST to certify the mass fraction (the ratio of pure beryllium in the beryllium oxide) in the compound. NIST provided its partners with support to perform the preparations and did the final analysis of the solutions when they were completed.

According to Winchester, previous analytical tests for exposure monitoring relied on an easily dissolved form of beryllium that was not representative of what people would be exposed to in the field. The new SRM mimics the form of beryllium to which workers would be exposed much more closely and should facilitate much more representative and informative toxicological studies, more sensitive monitoring and more effective clean up of contaminated areas.

Other news from the department politics & laws

These products might interest you

Starna

Starna by Starna Scientific

Highest quality precision quartz and glass cuvettes for all applications

Custom and OEM options. All popular cells available from stock!

glass cuvettes
Certified Reference Materials for Spectroscopy

Certified Reference Materials for Spectroscopy by Starna Scientific

Starna Scientific: Your solution for precise spectroscopy calibration

ISO-certified reference materials for accurate and safe spectroscopy

Certified reference materials of the European Commission's Joint Research Centre

Certified reference materials of the European Commission's Joint Research Centre by ERM

Certified reference materials for the analysis of environmental,food,clinical and industrial samples

Certified reference materials (CRMs) provide confidence in the correctness of analytical results

Certified Reference Materials and Pharmacopoeia Reagents

Certified Reference Materials and Pharmacopoeia Reagents by CPAchem

The experts in custom-made Certified Reference Materials and Pharmacopoeia Reagents

Your one-stop supplier of all Certified Reference Materials and Pharmacopoeia reagents

reference materials
NanoStandard™ / MicroStandard™

NanoStandard™ / MicroStandard™ by Applied Microspheres

Highly uniform polymer particle size standards, with traceable mean diameters

Traceable both to the international System of Units (SI) and NIST

particle size standards
SmartCal

SmartCal by Mettler-Toledo

SmartCal verifies Moisture Analyzer Performance in 10 minutes

Proper verification and documentation assists you to fulfill the demands of industry regulations and company audits

certified reference materials
Loading...

Most read news

More news from our other portals

All FT-IR spectrometer manufacturers at a glance