Irregularities in catalyst inhibit crude oil conversion
Blueprint of the catalyst's interior
In collaboration with various international research groups, Professor Bert Weckhuysen and PhD students Lukasz Karwacki and Marianne Kox of Utrecht University have studied the internal architecture of zeolite materials in great detail. These catalysts can be compared to Swiss cheeses, containing molecular-sized holes and channels. Zeolites play a crucial role as catalyst materials in the (petro-) chemical industry to convert crude oil into transportation fuels, such as kerosene, diesel and gasoline. In this process, which is called catalytic cracking, crude oil is forced through the Swiss cheese ‘channels’ where it is split into smaller fractions. In this way, long crude oil molecules are cut up, for example, into gasoline molecules. However, the researchers discovered that not all of the zeolite channels are equally accessible.
Using a combination of various advanced microscopic techniques, the researchers created a blueprint of the catalyst showing that the materials contain a regular pattern of different channel obstructions. They found for example that a large number of zeolite channels are not open-ended. This disruption of the channel layout means the catalyst does not function optimally. ‘The molecules reach ‘dead ends’ in the zeolite crystal and the only option is to turn back,’ says Professor Bert Weckhuysen. ‘But that’s not possible, because there’s already a queue of molecules behind them. From a practical point of view, this means that the advantages of zeolite catalysts are only partially exploited.’
Original publication: “Morphology-dependent MFI-type zeolite intergrowth structures leading to distinct internal and outer-surface molecular-diffusion barriers”, Nature Materials 2009.
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.