Researchers describe 'implausible' chemistry that produces herbicidal compound
University of Illinois researchers first reported the enzyme in Nature Chemical Biology in 2007, said Wilfred van der Donk, an author on both papers with microbiologist William Metcalf.
"Our team discovered this very implausible chemical reaction," van der Donk said. "And the more we learned about it the more unusual it became. The enzyme is unusual because it breaks a carbon-carbon bond without needing anything except oxygen."
The study is important because HEPD catalyzes a critical step in the chemical pathway that produces phosphinothricin (PT), a bacterial compound that is widely used as an agricultural herbicide. This compound, which is a component of two top-selling weed killers (Liberty and Basta), is effective when used with transgenic crops that have a PT-resistance gene inserted into their DNA. The resistance gene also comes from the bacteria that produce PT. It allows the bacteria (which belong to the genus Streptomyces) to emit the antibiotic to kill off their competitors without killing themselves. Similarly, corn and other crops that contain the resistance gene are able to withstand PT-based herbicides that kill the weeds around them.
The new findings are part of an ongoing exploration at Illinois of naturally produced molecules that contain carbon-phosphorus (C-P) bonds. Although little understood, these phosphonates (which contain C-P bonds) and phosphinates (with C-P-C bonds) are already widely used in agriculture and medicine. This class of compounds includes the herbicide glyphosate, the osteoporosis treatment alendronate, the antimalarial drug fosmidomycin and the antibiotics fosfomycin, dehydrophos and plumbemycin.
Whether man-made or naturally produced, phosphonates and phosphinates are structurally similar to other compounds used by enzymes in nature. They sometimes bind to the same enzymes and thus can inhibit ordinary cellular processes in bacteria or other organisms. This makes them attractive candidates for the development of new antibiotics, said van der Donk, a principal investigator on the study with Metcalf and biochemistry professor Satish Nair. Understanding how bacteria synthesize these compounds also enables the scientists to predict how bacteria might develop resistance to any new drugs that are developed, he said.
Most read news
Topics
Organizations
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.