4-in-1
Targeted gene suppression in cancer cells
In order to build a protein according to the genetic information in a cell, the gene on the DNA is read off and translated into a "stencil", mRNA, which is then used by the cell as a blueprint for the protein. The mRNA is a good point of attack to stop the synthesis of proteins required for tumor growth. To achieve this, siRNAs (small interfering RNAs) are introduced into the cell. These are short, double-stranded RNA fragments that bind specifically to the target mRNA. Inside the cell, a special protein complex binds to the siRNA, which unwinds and cleaves the mRNA. In this unprotected form, the mRNA is rapidly degraded by the cell.
When bound to nanoparticles, the siRNAs are easier to slip into cells. In order to specifically target cancer cells, the particles carry a short peptide, called RGD, which points the way: RGD strongly binds to an integrin, a membrane protein that is anchored to metastasizing tumor cells in much higher amounts than in healthy tissue. The integrins with RGD-equipped nanoparticles are actively brought into the cell interior with their cargo intact (receptor-mediated endocytosis).
The magnetic particles not only act as an aide for transport, they are also a contrast agent for MRI. This reveals where the tumors are, whether the particles are concentrating there, and how the treatment is progressing. If higher resolution is required, the fluorescence dye molecules come into play. In histological slides of tissue samples, they make it possible to see how the magnetic particles are taken up by individual cells an in which cell compartments they are concentrated.
Original publication: Jinwoo Cheon et al.; "All-in-One Target-Cell-Specific Magnetic Nanoparticles for Simultaneous Molecular Imaging and siRNA Delivery"; Angewandte Chemie International Edition, Published Online: 30 Apr 2009
Other news from the department science
Most read news
More news from our other portals
See the theme worlds for related content
Topic world Synthesis
Chemical synthesis is at the heart of modern chemistry and enables the targeted production of molecules with specific properties. By combining starting materials in defined reaction conditions, chemists can create a wide range of compounds, from simple molecules to complex active ingredients.
Topic world Synthesis
Chemical synthesis is at the heart of modern chemistry and enables the targeted production of molecules with specific properties. By combining starting materials in defined reaction conditions, chemists can create a wide range of compounds, from simple molecules to complex active ingredients.