To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Zimm-Bragg modelIn statistical mechanics, the Zimm-Bragg model is a helix-coil transition model that describes helix-coil transitions of macromolecules, usually polymer chains. Most models provide a reasonable approximation of the fractional helicity of a given polypeptide; the Zimm-Bragg model differs by incorporating the ease of propagation with respect to nucleation. Additional recommended knowledge
Helix-coil transition modelsHelix-coil transition models assume that polypeptides are linear chains composed of interconnected segments. Further, models group these sections into two broad categories: coils, random conglomerations of disparate unbound pieces, are represented by the letter 'C', and helices, ordered states where the chain has assumed a structure stabilized by hydrogen bonding, are represented by the letter 'H'.[1] Thus, it is possible to loosely represent a macromolecule as a string such as CCCCHCCHCHHHHHCHCCC and so forth. The number of coils and helices factors into the calculation of fractional helicity, where
Zimm-Bragg
The Zimm-Bragg model takes the cooperativity of each segment into consideration when calculating fractional helicity. The probability of any given monomer being a helix or coil is affected by which the previous monomer is; that is, whether the new site is a nucleation or propagation. By convention, a coil unit ('C') is always of statistical weight 1. Addition of a helix state ('H') to a previously coiled state (nucleation) is assigned a statistical weight
Adding a helix state to a site that is already a helix (propagation) has a statistical weight of which makes the propagation of a helix more favorable than nucleation of a helix from coil state.[2] From these parameters, it is possible to compute the fractional helicity where
Statistical mechanicsThe Zimm-Bragg model is equivalent to a one-dimensional Ising model and has no long-range interactions, i.e., interactions between residues well separated along the backbone; therefore, by the famous argument of Rudolf Peierls, it cannot undergo a phase transition. The statistical mechanics of the Zimm-Bragg model[3] may be solved exactly using the transfer-matrix method. The two parameters of the Zimm-Bragg model are σ, the statistical weight for nucleating a helix and s, the statistical weight for propagating a helix. These parameters may depend on the residue j; for example, a proline residue may easily nucleate a helix but not propagate one; a leucine residue may nucleate and propagate a helix easily; whereas glycine may disfavor both the nucleation and propagation of a helix. Since only nearest-neighbour interactions are considered in the Zimm-Bragg model, the full partition function for a chain of N residues can be written as follows where the 2x2 transfer matrix Wj of the jth residue equals the matrix of statistical weights for the state transitions The row-column entry in the transfer matrix equals the statistical weight for making a transition from state row in residue j-1 to state column in residue j. The two states here are helix (the first) and coil (the second). Thus, the upper left entry s is the statistical weight for transitioning from helix to helix, whereas the lower left entry σs is that for transitioning from coil to helix. See also
References
Categories: Polymer physics | Protein structure | Statistical mechanics | Thermodynamics |
|||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Zimm-Bragg_model". A list of authors is available in Wikipedia. |