To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Transition metalIn chemistry, the term transition metal (sometimes also called a transition element) has two possible meanings:
The first definition is simple and has traditionally been used. However, many interesting properties of the transition elements as a group are the result of their partly filled d subshells. Periodic trends in the d block (transition metals) are less prevailing than in the rest of the periodic table. Going across a period, the valence doesn't change, so the electron being added to an atom goes to the inner shell, not outer shell, strengthening the shield. [2] The (loosely defined) transition metals are the 40 chemical elements 21 to 30, 39 to 48, 71 to 80, and 103 to 112. The name transition comes from their position in the periodic table of elements. In each of the four periods in which they occur, these elements represent the successive addition of electrons to the d atomic orbitals of the atoms. In this way, the transition metals represent the transition between group 2 elements and group 13 elements.
Additional recommended knowledge
PropertiesTransition elements tend to have high tensile strength, density and melting and boiling points. As with many properties of transition metals, this is due to d orbital electrons' ability to delocalise within the metal lattice. In metallic substances, the more electrons shared between nuclei, the stronger the metal. There are several common characteristic properties of transition elements:
Variable oxidation statesAs opposed to group 1 and group 2 metals, ions of the transition elements may have multiple stable oxidation states, since they can lose d electrons without a high energetic penalty. Manganese, for example has two 4s electrons and five 3d electrons, which can be removed. Loss of all of these electrons leads to a +7 oxidation state. Osmium and ruthenium compounds are commonly found alone in stable +8 oxidation states, which is among the highest for isolatable compounds. Certain patterns in oxidation state emerge across the period of transition elements:
Other properties with respect to the stability of oxidation states:
Catalytic activityTransition metals form good homogeneous or heterogeneous catalysts, for example iron is the catalyst for the Haber process. Vanadium(V) oxide is used for the contact process, nickel is used to make margarine and platinum is used to speed up the manufacture of nitric acid. This is because they are able to form numerous oxidation states, and as such, are able to form new compounds during a reaction providing an alternative route with a lower overall activation energy. Colored compounds
We observe color as varying frequencies of electromagnetic radiation in the visible region of the electromagnetic spectrum. Different colors result from the changed composition of light after it has been reflected, transmitted or absorbed after hitting a substance. Because of their structure, transition metals form many different colored ions and complexes. Color even varies between the different ions of a single element - MnO4− (Mn in oxidation state 7+) is a purple compound, whereas Mn2+ is pale-pink. Coordination by ligands can play a part in determining color in a transition compound, due to changes in energy of the d orbitals. Ligands remove degeneracy of the orbitals and split them in to higher and lower energy groups. The energy gap between the lower and higher energy orbitals will determine the color of light that is absorbed, as electromagnetic radiation is only absorbed if it has energy corresponding to that gap. When a ligated ion absorbs light, some of the electrons are promoted to a higher energy orbital. Since different frequency light is absorbed, different colors are observed. The color of a complex depends on:
The complex ion formed by the d block element zinc (though not strictly a transition element) is colorless, because the 3d orbitals are full - no electrons are able to move up to the higher group. See also
References
Categories: Periodic table | Transition metals |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Transition_metal". A list of authors is available in Wikipedia. |