To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Toda field theoryIn the study of field theory and partial differential equations, a Toda field theory is derived from the following Lagrangian: Additional recommended knowledgeHere x and t are spacetime coordinates, (,) is the Killing form of a real r-dimensional Cartan algebra of a Kac-Moody algebra over , αi is the ith simple root in some root basis, ni is the Coxeter number, m is the mass (or bare mass in the quantum field theory version) and β is the coupling constant. Then a Toda field theory is the study of a function φ mapping 2 dimensional Minkowski space satisfying the corresponding Euler-Lagrange equations. If the Kac-Moody algebra is finite, it's called a Toda field theory. If it is affine, it is called an affine Toda field theory (after the component of φ which decouples is removed) and if it is hyperbolic, it is called a hyperbolic Toda field theory. Toda field theories are integrable models and their solutions describe solitons. The sinh-Gordon model is the affine Toda field theory with the generalized Cartan matrix and a positive value for β after we project out a component of φ which decouples. The sine-Gordon model is the model with the same Cartan matrix but an imaginary β. References
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Toda_field_theory". A list of authors is available in Wikipedia. |