To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Tm ligandsThe TmMe Ligand was first reported by Reglinski and Spicer (J. Chem. Soc. Chem. Commun. , 1996, 1975) and was prepared by reacting Methimazole (1-methylimidazole-2-thione) with sodium borohydride in a solvent-free melt. Both lithium and potassium salts have also been prepared. Other workers (e.g. Parkin, Vahrenkamp, Rabinovich) have extended the family of ligands (TmR) by replacing the methyl group with other organic functional groups (phenyl, 2-tolyl, 3-tolyl, 4-tolyl, cumyl, t-butyl, benzyl etc), while species BH2(mt)2- (BmMe) and BH3(mt)- have also been prepared. In contrast to the original syntheses, many of these ligand preparations are carried out in THF, toluene or xyxlene as solvent. The TmMe anion is a tridentate, tripodal sulfur donor ligand which is broadly similar to the Tp ligands. The donor atoms in this ligand class are similar to those in thioureas. Several research groups worldwide including those of John Reglinski and Mark Spicer, Gerard Parkin, Tony Hill [1], Heinrich Vahrenkamp, Daniel Rabinovich and Claudio Petinnari have been working on this ligand class. These ligands are an example of the scorpionate ligands. While in many resects the TmR ligands behave like the Tp ligands (many directly analogous metal complexes have been obtained) there are also many differences observed. These differences arise from three main factors:
The soft donor atoms allow, for instance, formation of stable lower p-block complexes, whereas the N-donor Tp ligands only form very moisture sensitive species. The larger chelate rings introduce a greater ligand flexibility, allowing many "inverted" structures in which the ligand coordinates through two S atoms and via the borohydride. This in turn leads to the formation of boratrane complexes (discussed below). Additional recommended knowledge
Ruthenium, rhodium, osmium and related metals
Here it can be seen that the boron binds to the metal, the osmium complex is an 18 VE complex, where the metal is formally in the zero oxidation state. The carbonyl stretching frequency is very low for this complex because the metal is so electron rich. The ruthenium complex is not shown because it has the same structure. M.R.StJ.Foreman, A.F.Hill, A.J.P.White and D.J.Williams, Organometallics, 2004, 23, 913. A.F.Hill, G.R.Owen, A.J.P.White and D.J.Williams, Angew. Chem., Int. Ed. Engl., 1999, 38, 2759.
Here it can be seen that the hydrogen atom attached to the boron is being transferred to the metal, it is thought that if the hydrogen is transferred totally to the metal that a reductive elimination reaction (opposite of oxidative addition) can occur to form the zero valent metal borane complex. M.R.StJ.Foreman, A.F.Hill, G.R.Owen, A.J.P.White and D.J.Williams, Organometallics, 2003, 22, 4446.
This complex should be comapired with the osmium complex, here to provide the metal with 18 valence electrons one fewer electrons is needed, so as a result the carbonyl seen in the ruthenium and osmium complexes has been replaced with a chloride ligand. I.R.Crossley, M.R.St. J.Foreman, A.F.Hill, A.J.P.White and D.J.Williams, Chem. Comm., 2005, 221. MolybdenumA large number of molybdenum complexes have been made, many of these mirror in some ways the chemistry of the Tp and cyclopentadienyl ligands. These very sulfur rich molybdenum complexes might be possible models for a molybdenum sulfide surface used in Hydrodesulfurization. M.R.StJ.Foreman, A.F.Hill, N.Tshabang, A.J.P.White, D.J.Williams, Organometallics, 2003, 22, 5593. M.Garner, M.-A.Lehmann, J.Reglinski and M.D.Spicer, Organometallics, 2001, 20, 5233. TungstenIt is possible by the reaction of [WBrL2(CO)2(CN-i-Pr2)] to form a Tm complex [WTm(CO)2(CN-i-Pr2)]. M.R.St. J.Foreman, A.F.Hill, A.J.P.White and D.J.Williams, Organometallics, 2003, 22, 3831. Zinc and cadmium complexesA large number of zinc and cadmium complexes of these Tm class ligands have been made as models for enzymes. An example of a cadmium complex, here the zinc is bonded to by the Tm liagnd and a thiolate ligand. S.Bakbak, C.D.Incarvito, A.L.Rheingold and D.Rabinovich, Inorganic Chemistry, 2002, 41, 998. Actinide complexesA uranium complex of Bm has been reported, to the uranium are attached three THF ligands and two Bm ligands. Note that the hydrides attached to the boron atoms are much closer to the uranium atom than the two phenyl groups. This suggests that the hydrides are partway between being attached to the boron and the metal. L.Maria, A.Domingos, I.Santos, Inorganic Chemistry, 2001, 40, 6863. Action as a nucleophileIn addition to acting as a ligand, Tm and Bm ligands can react with electrophiles such as dichloromethane to form cationic S, S' alkylated products. I.R.Crossley, A.F.Hill, E.R.Humphrey, M.K.Smith, N.Tshabang and A.C.Willis, Chem. Comm., 2004, 1878. Categories: Coordination compounds | Inorganic chemistry | Organometallic chemistry |
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Tm_ligands". A list of authors is available in Wikipedia. |