To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Tetrathiafulvalene
Tetrathiafulvalene is a organosulfur compound with the formula (H2C2S2C)2. Studies on this heterocyclic compound contributed to the development of molecular electronics. TTF is related to the hydrocarbon fulvalene, (C5H4)2, by replacement of four CH groups with sulfur atoms. Over 10,000 scientific publications discuss TTF and its derivatives.[1] Additional recommended knowledge
PreparationThe high level of interest in TTF’s has spawned the development of many syntheses of TTF and its analogues.[1] Most preparations entail the coupling of cyclic C3S2 building blocks such as 1,3-dithiole-2-thiones or the related 1,3-dithiole-2-ones. For TTF itself, the synthesis begins with the trithiocarbonate H2C2S2CS, which is S-methylated and then reduced to give H2C2S2CH(SCH3), which is treated as follows:[2]
Redox propertiesBulk TTF itself has unremarkable electrical properties (as do most organic compounds). Distinctive properties are, however, associated with salts of its oxidized derivatives, such as salts derived from TTF+. The high electrical conductivity of TTF salts can be attributed to the following features of TTF: (i) its planarity, which allows π-π stacking of its oxidized derivatives, (ii) its high symmetry, which promotes charge delocalization, thereby minimizing coulombic repulsions, and (iii) its ability to undergo oxidation at mild potentials to give a stable radical cation. Electrochemical measurements show that TTF can be oxidized twice reversibly:
Each dithiolylidene ring in TTF has 7π electrons: 2e for each sulfur atom, 1e for each sp2 carbon atom. Thus, oxidation converts each ring to an aromatic 6π-electron configuration. HistoryWudl et al. first demonstrated that the salt [TTF+]Cl- was a semiconductor.[3] Subsequently, Ferraris et al. showed that the charge-transfer salt [TTF]TCNQ is a narrow band gap semi-conductor.[4] X-ray diffraction studies of [TTF][TCNQ] revealed stacks of partially oxidized TTF molecules adjacent to anionic stacks of TCNQ molecules. This “segregated stack” motif was unexpected and is responsible for the distinctive electrical properties, i.e. high and anisotropic electrical conductivity. Since these early discoveries, numerous analogues of TTF have been prepared. Well studied analogues include tetramethyltetrathiafulvalene (Me4TTF), tetramethylselenafulvalenes (TMTSF’s), and bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF, CAS [66946-48-3]).[5] See alsoBechgaard salt References
Further reading
Categories: Thioethers | Sulfur heterocycles | Molecular electronics | Organic semiconductors |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Tetrathiafulvalene". A list of authors is available in Wikipedia. |