To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Spallation Neutron SourceThe Spallation Neutron Source (SNS) is an accelerator-based neutron source being built in Oak Ridge, Tennessee, USA, by the U.S. Department of Energy (DOE). SNS is being designed and constructed by a unique partnership of six DOE national laboratories: Argonne, Lawrence Berkeley, Brookhaven, Jefferson, Los Alamos, and Oak Ridge. As of September 1, 2007 it is the most powerful neutron source in the world. Additional recommended knowledge
FacilityConstruction was completed for SNS on time and under budget in 2006. SNS now provides the most intense pulsed neutron beams in the world for scientific research and industrial development. SNS is operating as a user facility that enables researchers from all over the world to study the science of materials that forms the basis for new technologies in energy, telecommunications, manufacturing, transportation, information technology, biotechnology, and health. A planned upgrade to heavy water (deuterium oxide) as central cooling water will improve the neutron output. SNS is managed by Oak Ridge National Laboratory for the DOE, Office of science. The Central Laboratory & Office Building (CLO) accommodates presently 400 to 500 outside research visitors a year, who explore the structural and dynamic behavior of materials and their interfaces by neutron bombardment. A separate building connected to the CLO houses the Center for Nanophase Materials Sciences, separately funded by the Department of Energy. The SNS facility is designed so that a second target facility building can be constructed to double the overall experimental capacity. The SNS target will accommodate up to 24 neutron beam instruments. Currently, 17 of these beam positions have been allocated and will include world-class diffractometers, spectrometers, and reflectometers designed specifically for the unique capabilities of SNS. One entire beam line will be devoted to the study of fundamental neutron physics. Each instrument is optimized for a particular area of science. As a whole, the instruments will support a wide variety of research into the structure and dynamics of materials at the atomic and molecular levels. Use of the instruments will range from highly applied topics such as the study of localized strains around welds to the study of magnetic phenomena in layered materials to experiments on functionality in biological materials. The first three of the instruments will become operational in 2006, and other instruments will be completed at the rate of one to four per year through at least 2011. On April 28, 2006, the SNS achieved beam on target for the first time at 2:04:13PM EST and the first significant amount of spalled neutrons were detected at 2:08PM EST. On August 11, 2007, the SNS became the most powerful neutron source in the world, surpassing the ISIS neutron source at Rutherford Appleton Laboratory[1]. What is spallation?When a high-energy proton bombards a heavy atomic nucleus, some neutrons are "spalled," or knocked out, in a nuclear reaction process called spallation. Other neutrons are "boiled off" as the bombarded nucleus heats up. For every proton striking the nucleus, 20 to 30 neutrons are expelled. Meson production limits spallation efficiency above 140 MeV. At the 1 GeV proton energy level, the Spallation Neutron Source will require 30 MeV per neutron produced. Neutron scattering is used by a variety of scientific disciplines to study the arrangement, motion, and interaction of atoms in materials. It's important because it provides valuable information that often cannot be obtained using other techniques, such as optical spectroscopies, electron microscopy, and x-ray diffraction. Scientists need all these techniques to provide the maximum amount of information on materials. The SNS process is, briefly:
See also
References
Papers
Additional Resources
Categories: Materials science | Scattering | Superconductivity | Neutron facilities |
|||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Spallation_Neutron_Source". A list of authors is available in Wikipedia. |