To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Pyrrole
Pyrrole, or pyrrol, is a heterocyclic aromatic organic compound, a five-membered ring with the formula C4H4NH.[1] Substituted derivatives are also called pyrroles. For example, C4H4NCH3 is N-methylpyrrole. Porphobilinogen is a trisubstituted pyrrole, which is the biosynthetic precursor to many natural products.[2] Pyrroles are components of more complex macrocycles, including the porphyrins of heme, the chlorins and bacteriochlorins[3] of chlorophyll, and porphyrinogens. Additional recommended knowledge
PropertiesPyrrole has very low basicity compared to amines and other aromatic compounds like pyridine where the ring nitrogen is not bonded to a hydrogen atom. This decreased basicity is attributed to the delocalization of the lone pair of electrons of the nitrogen atom in the aromatic ring. Pyrrole is a very weak base with a pKaH of about -4. Protonation results in loss of aromaticity and is therefore unfavorable. SynthesisMany methods exist for the organic synthesis of pyrrole and its derivatives. Classic named reactions are the Knorr pyrrole synthesis, the Hantzch pyrrole synthesis and the Paal-Knorr synthesis. The starting materials in the Piloty-Robinson pyrrole synthesis are 2 equivalents of an aldehyde and hydrazine[4][5]. The product is a pyrrole with specific substituents in the 3 and 4 positions. The aldehyde reacts with the diamine to an intermediate di-imine (R-C=N-N=C-R) which with added hydrochloric acid, gives ring-closure and loss of ammonia to the pyrrole. In one modification propionaldehyde is reacted first with hydrazine and then with benzoyl chloride at high temperatures and assisted by microwave irradiation[6]: In the second step a [3,3]sigmatropic reaction takes place between two intermediates. ReactivityBoth NH and CH protons in pyrroles are moderately acidic and can be deprotonated with strong bases such as butyllithium and the metal hydrides. The resulting "pyrrolides" are nucleophilic. Trapping of the conjugate base with an electrophile (e.g. an alkyl or acyl halide) reveals which sites were deprotonated based on which ring positions actually react as nucleophiles. The product distribution of such a reaction can often be complex and depends on the base used (especially the counterion, such as lithium from butyllithium or sodium from sodium hydride), existing substitution of the pyrrole, and the electrophile. Pyrrole undergoes electrophilic aromatic substitution predominantly at the 2 and 5 positions, though the substitution product at positions 3 and 4 is obtained in low yields. Two such reactions that are especially significant for producing functionalized pyrroles are the Mannich reaction and the Vilsmeier-Haack reaction (depicted below) [7] [8], both of which are compatible with a variety of pyrrole substrates. Reaction of pyrroles with formaldehyde form porphyrins. Pyrrole compounds can also participate in cycloaddition (Diels-Alder) reactions under certain conditions, such as Lewis acid catalysis, heating, or high pressure. Commercial UsesIn a 1994 report released by five top cigarette companies, pyrrole is one of the 599 additives to cigarettes. Its use or purpose, however, is unknown, like most cigarette additives. [9] See also
References
Categories: Pyrroles | Nitrogen heterocycles | Aromatic compounds | Heterocyclic compounds | Simple aromatic rings |
|||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Pyrrole". A list of authors is available in Wikipedia. |