To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Proton affinity
The proton affinity, Epa, of a anion or of a neutral atom or molecule is a measure of its gas-phase basicity. It is the energy released in the following reactions:[1]
Additional recommended knowledgeThese reactions are always exergonic in the gas phase, i.e. energy is released when the reaction advances in the direction shown. However, proton affinities are conventionally quoted with the opposite sign convention from most other thermodynamic properties, a positive Epa indicating a release of energy by the system. This is the same sign convention as is used for electron affinity. The higher the proton affinity, the stronger the base and the weaker the conjugate acid in the gas phase. The strongest known base is the methanide anion (Epa = 1743 kJ/mol), slightly stronger than the hydride ion (Epa = 1675 kJ/mol),[2] making methane the weakest proton acid[3] in the gas phase, followed by dihydrogen. The weakest known base is the helium atom (Epa = 177.8 kJ/mol),[4] making the hydrohelium(1+) ion the strongest known proton acid. Proton affinities illustrate the role of hydration is aqueous-phase Brønsted acidity. Hydrofluoric acid is a weak acid in aqueous solution (pKa = 3.15)[5] but a very weak acid in the gas phase (Epa (F−) = 1554 kJ/mol):[2] the fluoride ion is a strong a base as SiH3− in the gas phase, but its basicity is reduced in aqueous solution because it is strong hydrated, and therefore stabilized. The contrast is even more marked for the hydroxide ion (Epa = 1635 kJ/mol),[2] one of the strongest known proton acceptors in the gas phase. Suspensions of potassium hydroxide in dimethyl sulfoxide (which does not solvate the hydroxide ion as strongly as water) are markedly more basic than aqueous solutions, and are capable of deprotonating such weak acids as triphenylmethane (pKa = ca. 30).[6]
These estimates suffer from the fact the free energy change of dissociation is in effect the small difference of two large numbers. However, hydrofluoric acid is correctly predicted to be a weak acid in aqueous solution and the estimated value for the pKa of dihydrogen is in agreement with the behaviour of saline hydrides (e.g., sodium hydride) when used in organic synthesis. See alsoReferences
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Proton_affinity". A list of authors is available in Wikipedia. |