My watch list
my.chemeurope.com  
Login  

Plasticizer




Plasticizers are additives that increase the plasticity or fluidity the material to which they are added, these include plastics, cement, concrete, wallboard and clay bodies. Although the same compounds are often used for both plastics and concretes, the desired effect is slightly different.

Plasticizers for concrete soften the mix before it hardens, increasing its workability or reducing water, and are usually not intended to affect the properties of the final product after it hardens.

Plasticizers for wallboard increases fluidity of the mix, allowing lower use of water and thus reducing energy to dry the board.

The plasticizers for plastics soften the final product increasing its flexibility.

Contents

Plasticizers for concrete production

Superplasticizers or High Range Water Reducers or Dispersants, are chemical admixtures that can be added to concrete mixtures to improve workability. Strength of concrete is inversely proportional to the amount of water added or water-cement (w/c) ratio. In order to produce stronger concrete, less water is added, which makes the concrete mixture very unworkable and difficult to mix, necessitating the use of plasticizers, water reducers, superplasticizers or dispersants.

Superplasticizers are also often used when pozzolanic ash is added to concrete to improve strength. This method of mix proportioning is especially popular when producing high strength concrete and fiber reinforced concrete.

Adding 2% superplasticizer per unit weight of cement is usually sufficient. However, note that most commercially available superplasticizers come dissolved in water, so the extra water added has to be accounted for in mix proportioning. Adding an excessive amount of superplasticizer will result in excessive segregation of concrete and is not advisable. Some studies also show that too much superplasticizer will result in a retarding effect.

Plasticizers are commonly manufactured from lignosulfonates, a by-product from the paper industry. High Range Superplasticizers have generally been manufactured from sulfonated naphthalene condensate (produced in the US by GEO Specialty Chemicals, Inc.) or sulfonated melamine formaldehyde, although new generation products based on polycarboxylic ethers are now available. Traditional lignosulfonate based plasticisers, naphthalene and melamine sulfonate based superplasticisers disperse the flocculated cement particles through a mechanism of electrostatic repulsion (see colloid). In normal plasticisers, the active substances are adsorbed on to the cement particles, giving them a negative charge, which leads to repulsion between particles. Lignin, naphthalene and melamine sulfonate superplasticisers are organic polymers. The long molecules wrap themselves around the cement particles, giving them a highly negative charge so that they repel each other.

Polycarboxylate Ethers (PCE) or just Polycarboxylate (PC), the new generation of superplasticisers are not only chemically different from the older sulfonated melamine and naphthalene based products but their action mechanism is also different, giving cement dispersion by steric stabilisation, instead of electrostatic repulsion. This form of dispersion is more powerful in its effect and gives improved workability retention to the cementitious mix. Furthermore, the chemical structure of PCE allows for a greater degree of chemical modification than the older generation products, offering a range of performance that can be tailored to meet specific needs.

In ancient times, the Romans used blood as a superplasticizer for their concrete mixes.

Plasticisers can be obtained by your local concrete manufacturer

Household washing up liquid may also be used as a simple plasticizer.

Plasticizers for gypsum wallboard production

Superplasticizers or Dispersants, are chemical additives that can be added to wallboard mixtures to improve workability. In order to reduce the energy in drying wallboard, less water is added, which makes the gypsum mixture very unworkable and difficult to mix, necessitating the use of plasticizers, water reducers or dispersants.

Adding ~2 pounds/MSF (Thousand Square Feet of 1/2 inch wallboard) (14.7g/m2 of wallboard) of dispersant is usually sufficient. Some studies also show that too much of lignosulfonate dispersant could result in a set retarding effect. Data showed that amorphous crystal formations occurred that detracted from the mechanical needle-like crystal interaction in the core, preventing a stronger core. The sugars, chelating agents in lignosulfonates such as aldonic acids and extractive compounds are mainly responsible for set retardation.

Dispersants are commonly manufactured from lignosulfonates, a by-product from the paper industry. High Range Superplasticizers have generally been manufactured from sulfonated naphthalene condensate (produced in the US by GEO Specialty Chemicals, Inc.), although new generation products based on polycarboxylic ethers are now available. Traditional lignosulfonate and naphthalene sulfonate based superplasticisers disperse the flocculated gypsum particles through a mechanism of electrostatic repulsion (see colloid). In normal plasticisers, the active substances are adsorbed on to the cement particles, giving them a negative charge, which leads to repulsion between particles. Lignin and naphthalene sulfonate plasticizers are organic polymers. The long molecules wrap themselves around the gypsum particles, giving them a highly negative charge so that they repel each other.

Plasticizers for plastics

Plasticizers for plastics are additive, most commonly phthalates, that give hard plastics like PVC the desired flexibility and durability. They are often based on esters of polycarboxylic acids with linear or branched aliphatic alcohols of moderate chain length. Plasticizers work by embedding themselves between the chains of polymers, spacing them apart (increasing of the "free volume"), and thus significantly lowering the glass transition temperature for the plastic and making it softer. For plastics such as PVC, the more plasticiser added, the lower its cold flex temperature will be. This means that it will be more flexible, though its strength and hardness will decrease as a result of it. Some plasticizers evaporate and tend to concentrate in an enclosed space; the "new car smell" is caused mostly by plasticizers evaporating from the car interior.

Dicarboxylic/tricarboxylic ester-based plasticizers

  • Phthalate-based plasticizers are used in situations where good resistance to water and oils is required. Some common phthalate plasticizers are:
    • Bis(2-ethylhexyl) phthalate (DEHP), used in construction materials, food packaging, children toys, medical devices, and cling wrap
    • Diisononyl phthalate (DINP), found in garden hoses, shoes, toys, and building materials
    • Bis(n-butyl)phthalate (DnBP, DBP), used for cellulose plastics, food wraps, adhesives, perfumes and also in cosmetics - about a third of nail polishes, glosses, enamels and hardeners contain it, together with some shampoos, sunscreens, skin emollients, and insect repellents
    • Butyl benzyl phthalate (BBzP) is found in vinyl tiles, traffic cones, food conveyor belts, artificial leather and plastic foams
    • Diisodecyl phthalate (DIDP), used for insulation of wires and cables, car undercoating, shoes, carpets, pool liners
    • Di-n-octyl phthalate (DOP or DnOP), used in flooring materials, carpets, notebook covers, and high explosives, such as Semtex. Together with DEHP it was the most common plasticizers, but now is suspected of causing cancer
    • Diisooctyl phthalate (DIOP), all-purpose plasticizer for polyvinyl chloride, polyvinyl acetate, rubbers, cellulose plastics and polyurethane.
    • Diethyl phthalate (DEP)
    • Diisobutyl phthalate (DIBP)
    • Di-n-hexyl phthalate, used in flooring materials, tool handles and automobile parts
  • Trimellitates are used in automobile interiors and other applications where resistance to high temperature is required. They have extremely low volatility.
    • Trimethyl trimellitate (TMTM)
    • Tri-(2-ethylhexyl) trimellitate (TEHTM-MG)
    • Tri-(n-octyl,n-decyl) trimellitate (ATM)
    • Tri-(heptyl,nonyl) trimellitate (LTM)
    • n-octyl trimellitate (OTM)
  • Adipate-based plasticizers are used for low-temperature or resistance to ultraviolet light. Some examples are:
    • Bis(2-ethylhexyl)adipate (DEHA)
    • Dimethyl adipate (DMAD)
    • Monomethyl adipate (MMAD)
    • Dioctyl adipate (DOA)
  • Maleates
    • Dibutyl maleate (DBM)
    • Diisobutyl maleate (DIBM)

Other plasticisers

  • Sulfonamides
    • N-ethyl toluene sulfonamide (o/p ETSA), ortho and para isomers
    • N-(2-hydroxypropyl) benzene sulfonamide (HP BSA)
    • N-(n-butyl) benzene sulfonamide (BBSA-NBBS)
  • Glycols/polyethers
    • Triethylene glycol dihexanoate (3G6, 3GH)
    • Tetraethylene glycol diheptanoate (4G7)
  • Polymeric plasticizers

Some other chemicals working as plasticizers are nitrobenzene, carbon disulfide and β-naphthyl salicylate. Plasticizers, such as DEHP and DOA, were found to be carcinogens and endocrine disruptors.

Safer plasticizers

Safer plasticizers with better biodegradability and less biochemical effects are being developed. Some such plasticizers are:

  • Acetylated monoglycerides; these can be used as food additives
  • Alkyl citrates, used in food packagings, medical products, cosmetics and children toys
    • Triethyl citrate (TEC)
    • Acetyl triethyl citrate (ATEC), higher boiling point and lower volatility than TEC
    • Tributyl citrate (TBC)
    • Acetyl tributyl citrate (ATBC), compatible with PVC and vinyl chloride copolymers
    • Trioctyl citrate (TOC), also used for gums and controlled release medicines
    • Acetyl trioctyl citrate (ATOC), also used for printing ink
    • Trihexyl citrate (THC), compatible with PVC, also used for controlled release medicines
    • Acetyl trihexyl citrate (ATHC), compatible with PVC
    • Butyryl trihexyl citrate (BTHC, trihexyl o-butyryl citrate), compatible with PVC
    • Trimethyl citrate (TMC), compatible with PVC

Plasticizers for energetic materials

For energetic materials, especially propellants (eg. smokeless powders), plasticizers based on nitrates are frequently employed. Some such plasticizers are:

Due to the secondary alcohol groups, NG and BTTN have relatively low thermal stability. METN, DEGN, BDNPF and BDNPA have relatively low energies. NG and DEGN have relatively high vapor pressure. [1]

 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Plasticizer". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE