Phytoremediation, Hyperaccumulators
This table was originally provided by Stevie Famulari for her students at the University of New Mexico Landscape Architecture Department, for a phytoremediation project regarding the drainage canyon of the Manhattan Project at Los Alamos, New Mexico. It has now grown into three sections.
This section covers mainly some toxic metals and informations on the plants used for their remediation.
Additional recommended knowledge
See also
Hyperaccumulators table – 1
hyperaccumulators and contaminants : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, Naphtalene, Pb, Pd, Pt, Se, Zn – accumulation rates
Contaminant | Accumulation rates (in mg/kg dry weight) | Latin name | English name | H-Hyperaccumulator or A-Accumulator P-Precipitator T-Tolerant | Notes | Sources
|
Al-Aluminium | A- | Agrostis castellana | Bent Grass | As(A), Mn(A), Pb(A), Zn(A) | Origin Portugal | [1]
|
Al - Aluminium | 1000 | Hordeum Vulgare | Barley | xxx | 25 records of plants | [2],[3]
|
Al-Aluminium | xxx | Solidago hispida (Solidago Canadensis L.) | Hairy Goldenrod | xxx | Comes from Canada | [2],[3]
|
Al-Aluminium | 100 | Vicia faba | Horse Bean | xxx | xxx | [2],[3]
|
Ag-Silver | xxx | Brassica napus | Rapeseed plant | Cr, Hg, Pb, Se, Zn | Phytoextraction | [4],[5]
|
Ag-Silver | xxx | Salix Spp. | Osier spp. | Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products[5]; Cd, Pb, U, Zn (S. viminalix)[6]; Potassium ferrocyanide (S. babylonica L.)[7] | Phytoextraction. Perchlorate (wetland halophytes) | [5]
|
As-Arsenic | 100 | Agrostis capillaris L. | Bent Grass | Al(A), Mn(A), Pb(A), Zn(A) | xxx | [3]
|
As-Arsenic | H- | Agrostis castellana | Bent Grass | Al(A), Mn(A), Pb(A), Zn(A) | Origin Portugal | [1]
|
As-Arsenic | 1000 | Agrostis tenerrima Trin. | Colonial bentgrass | xxx | 4 records of plants | [3],[8]
|
As-Arsenic | 27,000 (fronds)[9] | Pteris vittata L. | Chinese brake fern | 26% of arsenic in the soil removed after 20 weeks' plantation, about 90% As accumulated in fronds.[10]. | Root extracts reduce arsenate to arsenite[11]. | xxx
|
Be-Beryllium | xxx | xxx | xxx | xxx | No reports found for accumulation | [3]
|
Cr-Chromium | xxx | Azolla spp. | xxx | xxx | xxx | [3],[12]
|
Cr-Chromium | H- | Bacopa monnieri | Smooth Water Hyssop | Cd(H), Cu(H), Hg(A), Pb(A) | Origin India; aquatic emergent species | [1],[13]
|
Cr-Chromium | xxx | Brassica juncea L. | Indian mustard | Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) | cultivated | [1],[5],[14]
|
Cr-Chromium | xxx | Brassica napus | Rapeseed plant | Ag, Hg, Pb, Se, Zn | Phytoextraction | [4],[5]
|
Cr-Chromium | A- | Vallisneria Americana | Tape Grass | Cd(H), Pb(H) | Native to Europe and North Africa; widely cultivated in the aquarium trade | [1]
|
Cu(H), Cd(H), Cr(A), Pb(H) | xxx | Vallisneria Americana | Tape Grass | Cd(H), Cr(A), Pb(H) | Native to Europe and North Africa; widely cultivated in the aquarium trade | [1]
|
Cr-Chromium | 1000 | Dicoma niccolifera | xxx | xxx | 35 records of plants | [3]
|
Cr-Chromium | xxx | Eichhornia crassipes | Water Hyacinth | Cd(H), Cu(A), Hg(H), Pb(H), Zn(A). Also Cs, Sr, U[15], and pesticides[16]. | Pantropical/Subtropical, 'the troublesome weed' | [1]
|
Cr-Chromium | xxx | Helianthus annuus | xxx | xxx | Phytoextraction & rhizofiltration | [1],[5]
|
Cr | A- | Hydrilla verticallata | Hydrilla | Cd(H) Hg(H), Pb(H) | xxx | [1]
|
Cr-Chromium | xxx | Medicago sativa | Alfalfa | xxx | xxx | [3],[17]
|
Cr-Chromium | xxx | Pistia stratiotes | Water lettuce | Cd(T), Hg(H), Cr(H), Cu(T) | xxx | [1],[3],[18]
|
Cr-Chromium | xxx | Salix Spp. | Osier spp. | Ag, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products[5]; Cd, Pb, U, Zn (S. viminalix)[6]; Potassium ferrocyanide (S. babylonica L.)[7] | Phytoextraction. Perchlorate (wetland halophytes) | [5]
|
Cr-Chromium | xxx | Salvinia molesta | Kariba weeds or water ferns | Cr(H), Ni(H), Pb(H), Zn(A) | xxx | [1],[3],[19]
|
Cr-Chromium | xxx | Spirodela polyrhiza | Giant Duckweed | Cd(H), Ni(H), Pb(H), Zn(A) | Native to North America | [1],[3],[19]
|
Cr-Chromium | 100 | Sutera fodina | xxx | xxx | xxx | [3],[20],[21]
|
Cr-Chromium | A- | Thlaspi caerulescens | xxx | Cd(H), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H) | Phytoextraction. T. caerulescens may acidify its rhizosphere, which would affect metal uptake by increasing available metals[22] | [1],[3],[5],[23],[24],[25]
|
Cu-Copper | 9000 | Aeolanthus biformifolius | xxx | xxx | xxx | [26]
|
Cu-Copper | xxx | Athyrium yokoscense | (Japanese false spleenwort?) | Cd(A), Pb(H), Zn(H) | Origin Japan | [1]
|
Cu-Copper | A- | Azolla filiculoides | Pacific mosquitofern | Ni(A), Pb(A), Mn(A) | Origin Africa; floating plant | [1]
|
Cu-Copper | H- | Bacopa monnieri | Smooth Water Hyssop | Cd(H), Cr(H), Hg(A), Pb(A) | Origin India; aquatic emergent species | [1],[13]
|
Cu-Copper | xxx | Brassica juncea L. | Indian mustard | Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) | cultivated | [1],[5],[14]
|
Cu-Copper | H- | Callisneria Americana | Tape Grass | Cd(H), Cr(A), Pb(H) | Native to Europe and North Africa; widely cultivated in the aquarium trade | [1]
|
Cu-Copper | xxx | Eichhornia crassipes | Water Hyacinth | Cd(H), Cr(A), Hg(H), Pb(H), Zn(A), Also Cs, Sr, U[15], and pesticides[16]. | Pantropical/Subtropical, 'the troublesome weed' | [1]
|
Cu-Copper | 1000 | Haumaniustrum robertii | xxx | xxx | 27 records of plants; origin Africa. Vernacular name: 'copper flower'. This species' phanerogamme has the highest cobalt content. Its distribution could be gouverned by cobalt rather than copper[27]. | [3],[24]
|
Cu-Copper | xxx | Helianthus annuus | Sunflower | xxx | Phytoextraction & rhizofiltration | [1],[24]
|
Cu-Copper | 1000 | Larrea tridentata | Creosote Bush | xxx | 67 records of plants; origin U.S. | [3],[24]
|
Cu-Copper | H- | Lemna minor | Duckweed | Pb(H), Cd(H), Zn(A) | Native to North America and widespread | [1]
|
Cu-Copper | T- | Pistia stratiotes | Water Lettuce | Cd(T), Hg(H), Cr(H) | Pantropical, origin South U.S.A.; aquatic herb | [1]
|
Cu-Copper | xxx | Thlaspi caerulescens | Alpine pennycress | Cd(H), Cr(A), Co(H), Mo, Ni(H), Pb(H), Zn(H) | Phytoextraction. Copper noticeably limits its growth[25]. | [1],[3],[5],[22],[23],[24],[25]
|
Mn-Manganese | A- | Agrostis castellana | Bent Grass | Al(A), As(A), Pb(A), Zn(A) | Origin Portugal | [1]
|
Mn-Manganese | xxx | Azolla filiculoides | Pacific mosquitofern | Cu(A), Ni(A), Pb(A) | Origin Africa; floating plant | [1]
|
Mn-Manganese | xxx | Brassica juncea L. | Indian mustard | xxx | xxx | [5],[14]
|
Mn-Manganese | xxx | Helianthus annuus | Sunflower | xxx | Phytoextraction & rhizofiltration | [5]
|
Mn-Manganese | 1000 | Macademia neurophylla | xxx | xxx | 28 records of plants | [3],[28]
|
Mn-Manganese | 200 | xxx | xxx | xxx | xxx | [3]
|
Hg-Mercury | A- | Bacopa monnieri | Smooth Water Hyssop | Cd(H), Cr(H), Cu(H), Hg(A), Pb(A) | Origin India; aquatic emergent species | [1],[13]
|
Hg-Mercury | xxx | Brassica napus | Rapeseed plant | Ag, Cr, Pb, Se, Zn | Phytoextraction | [4],[5]
|
Hg-Mercury | xxx | Eichhornia crassipes | Water Hyacinth | Cd(H), Cr(A), Cu(A), Pb(H), Zn(A)Also Cs, Sr, U[15], and pesticides[16]. | Pantropical/Subtropical, 'the troublesome weed' | [1]
|
Hg | H- | Hydrilla verticallata | Hydrilla | Cd(H), Cr(A), Pb(H) | xxx | [1]
|
Hg-Mercury | 1000 | Pistia stratiotes | Water lettuce | Cd(T), Cr(H), Cu(T) | 35 records of plants | [1],[3],[24],[29]
|
Hg-Mercury | xxx | Salix Spp. | Osier spp. | Ag, Cr, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products[5]; Cd, Pb, U, Zn (S. viminalix)[6]; Potassium ferrocyanide (S. babylonica L.)[7] | Phytoextraction. Perchlorate (wetland halophytes) | [5]
|
Mo-molybdenum | 1500 | Thlaspi caerulescens (Brassica) | Alpine pennycress | Cd(H), Cr(A), Co(H), Cu(H), Ni(H), Pb(H), Zn(H) | phytoextraction | [1],[3],[5],[22],[23],[24],[25]
|
Naphtalene | xxx | Festuca arundinacea | Tall Fescue | xxx | increases catabolic genes and the mineralization of naphthalene | [30]
|
Naphtalene | xxx | Trifolium hirtum | Pink clover | xxx | decreases catabolic genes and the mineralization of naphthalene | [30]
|
Pb-Lead | A- | Agrostis castellana | Bent Grass | Al(A), As(H), Mn(A), Zn(A) | Origin Portugal | [1]
|
Pb-Lead | xxx | Ambrosia artemisiifolia | Ragweed | xxx | xxx | [4]
|
Pb-Lead | xxx | Armeria maritima | Seapink Thrift | xxx | xxx | [4]
|
Pb-Lead | xxx | Athyrium yokoscense | (Japanese false spleenwort?) | Cd(A), Cu(H), Zn(H) | Origin Japan | [1]
|
Pb-Lead | A- | Azolla filiculoides | Pacific mosquitofern | Cu(A), Ni(A), Mn(A) | Origin Africa; floating plant | [1]
|
Pb-Lead | A- | Bacopa monnieri | Smooth Water Hyssop | Cd(H), Cr(H), Cu(H), Hg(A) | Origin India; aquatic emergent species | [1],[13]
|
Pb-Lead | H- | Brassica juncea | Indian mustard | Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) | 79 recorded plants. Phytoextraction | [1],[3],[4],[5],[14],[22],[24],[25],[31]
|
Pb-Lead | xxx | Brassica napus | Rapeseed plant | Ag, Cr, Hg, Se, Zn | Phytoextraction | [4],[5]
|
Pb-Lead | xxx | Brassica oleracea | Ornemental Kale et Cabbage, Broccoli | xxx | xxx | [4]
|
Pb-Lead | H- | Callisneria Americana | Tape Grass | Cd(H), Cr(A), Cu(H) | Native to Europe and North Africa; widely cultivated in the aquarium trade | [1]
|
Pb-Lead | xxx | Eichhornia crassipes | Water Hyacinth | Cd(H), Cr(A), Cu(A), Hg(H), Zn(A). Also Cs, Sr, U[15], and pesticides[16]. | Pantropical/Subtropical, 'the troublesome weed' | [1]
|
Pb-Lead | xxx | Festuca ovina | Blue Sheep Fescue | xxx | xxx | [4]
|
Pb-Lead | xxx | Helianthus annuus | Sunflower | xxx | Phytoextraction & rhizofiltration | [1],[4],[5],[6],[31]
|
Pb-Lead | H- | Hydrilla verticallata | Hydrilla | Cd(H), Cr(A), Hg(H) | xxx | [1]
|
Pb-Lead | H- | Lemna minor | Duckweed | Cd(H), Cu(H), Zn(H) | Native to North America and widespread | [1]
|
Pb-Lead | xxx | Salix viminalis | Common Osier | Cd, U, Zn[6]; Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products (S. spp.)[5]; Potassium ferrocyanide (S. babylonica L.)[7] | Phytoextraction. Perchlorate (wetland halophytes) | [6]
|
Pb-Lead | H- | Salvinia molesta | Water Fern | Cr(H), Ni(H), Pb(H), Zn(A) | Origin India | [1]
|
Pb-Lead | xxx | Spirodela polyrhiza | Giant Duckweed | Cd(H), Cr(H), Ni(H), Zn(A) | Native to North America | [1],[3],[19]
|
Pb-Lead | xxx | Thlaspi caerulescens (Brassica) | Alpine pennycress | Cd(H), Cr(A), Co(H), Cu(H), Mo(H), Ni(H), Zn(H) | phytoextraction. | [1],[3],[5],[22],[23],[24],[25]
|
Pb-Lead | xxx | Thlaspi rotundifolium | Pennycress | xxx | xxx | [4]
|
Pb-Lead | xxx | Triticum aestivum | Wheat (scout) | xxx | xxx | [4]
|
Pb-Lead | A-200 | xxx | xxx | xxx | xxx | [3]
|
Pd-Palladium | xxx | xxx | xxx | xxx | No reports found for accumulation | [3]
|
Pt-Platinum | xxx | xxx | xxx | xxx | No reports found for accumulation | [3]
|
Se-Selenium | xxx | Brassica juncea | Indian mustard | xxx | Rhizosphere bacteria enhance accumulation[32] | [5]
|
Se-Selenium | xxx | Brassica napus | Rapeseed plant | Ag, Cr, Hg, Pb, Zn | Phytoextraction | [4],[5]
|
Se-Selenium | 1.9% of the total mass Se input is accumulated in its tissues; 0.5% is removed via biological volatilization[33]. | Chara canescens Desv. & Lois | Muskgrass | xxx | Muskgrass treated with selenite contains 91% of the total Se in organic forms (selenoethers and diselenides), compared with 47% in muskgrass treated with selenate[34]. Low rates of Se volatilization from selenate-supplied muskgrass (10-fold less than from selenite) may be due to a major rate limitation in the reduction of selenate to organic forms of Se in muskgrass. | [35]
|
Se-Selenium | xxx | Kochia scoparia | xxx | Pb, U[6]. Ag, Cr, Hg, Zn | Perchlorate (wetland halophytes). Phytoextraction | [1],[5]
|
Se-Selenium | xxx | Salix Spp. | Osier spp. | Ag, Cr, Hg, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products[5]; Cd, Pb, U, Zn (S. viminalis)[6]; Potassium ferrocyanide (S. babylonica L.)[7] | Phytoextraction. Perchlorate (wetland halophytes) | [5]
|
Zn-Zinc | A- | Agrostis castellana | Bent Grass | Al(A), As(H), Mn(A), Pb(A) | Origin Portugal | [1]
|
Zn-Zinc | xxx | Athyrium yokoscense | (Japanese false spleenwort?) | Cd(A), Cu(H), Pb(H) | Origin Japan | [1]
|
Zn-Zinc | xxx | Brassicaeae | xxx | Hyperaccumulators: Cd, Cs, Ni, Sr | Phytoextraction | [5]
|
Zn-Zinc | xxx | Brassica juncea L. | Indian mustard | Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A) | larvae of Pieris brassicae do not even sample its high-Zn leaves. (Pollard and Baker, 1997) | [1],[5],[14]
|
Zn-Zinc | xxx | Brassica napus | Rapeseed plant | Ag, Cr, Hg, Pb, Se | Phytoextraction | [4],[5]
|
Zn-Zinc | xxx | Eichhornia crassipes | Water Hyacinth | Cd(H), Cr(A), Cu(A), Hg(H), Pb(H)Also Cs, Sr, U[15], and pesticides[16]. | Pantropical/Subtropical, 'the troublesome weed' | [1]
|
Zn-Zinc | xxx | Helianthus annuus | Sunflower | xxx | Phytoextraction & rhizofiltration | [5],[6]
|
Zn-Zinc | xxx | Salix viminalis | Common Osier | Ag, Cr, Hg, Se, Petroleum hydrocarbures, Organic solvents, MTBE, TCE and by-products[5]; Cd, Pb, U (S. viminalis)[6]; Potassium ferrocyanide (S. babylonica L.)[7] | Phytoextraction. Perchlorate (wetland halophytes) | [6]
|
Zn-Zinc | A- | Salvinia molesta | Water Fern | Cr(H), Ni(H), Pb(H), Zn(A) | Origin India | [1]
|
Zn-Zinc | 1400 | Silene vulgaris (Moench) Garcke (Caryophyllaceae) | xxx | xxx | Ernst et al. (1990)
|
Zn-Zinc | xxx | Spirodela polyrhiza | Giant Duckweed | Cd(H), Cr(H), Ni(H), Pb(H) | Native to North America | [1],[3],[19]
|
Zn-Zinc | H-10,000 | Thlaspi caerulescens (Brassica) | Alpine pennycress | Cd(H), Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H) | 48 records of plants. May acidify its own rhizosphere, which would facilitate absorption by solubilization of the metal[22] | [1],[3],[5],[23],[24],[25],[31]
|
Zn-Zinc | xxx | Trifolium pratense | Red Clover | nonmetal accumulator | Its rhizosphere is denser in bacteria than that of Thlaspi caerulescens, but Thlaspi c. has relatively more metal-resistant bacteria[22] | xxx
|
Cs-137 activity was much smaller in leaves of larch and sycamore maple than of spruce: spruce > larch > sycamore maple.
Reference sources and notes for the hyperaccumulators table
Notes
- The references are so far mostly from academic trial papers, experiments and generally of exploration of that field.
- Alpine pennycress or «Alpine Pennygrass» is found as «Alpine Pennycrest» in (some books).
- Uranium's symbol is sometimes given as Ur instead of U. According to Ulrich Schmidt[6], plants' concentration of uranium is considerably increased by an application of citric acid, which solubilizes the Uranium (and other metals).
References
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 898
- ^ a b c Grauer & Horst 1990
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 891
- ^ a b c d e f g h i j k l m n [1] A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils. Site adapted from a report from Northwestern University written by Joseph L. Fiegl, Bryan P. McDonnell, Jill A. Kostel, Mary E. Finster, and Dr. Kimberly Gray
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 19
- ^ a b c d e f g h i j k l [2] Ulrich Schmidt, Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals. J. Environ. Qual. 32:1939-1954 (2003)
- ^ a b c d e f [3] X.Z. Yu, P.H. Zhou and Y.M. Yang, The potential for phytoremediation of iron cyanide complex by Willows. Ecotoxicology 2006.
- ^ Porter and Peterson 1975
- ^ [4] Junru Wang, Fang-Jie Zhao, Andrew A. Meharg, Andrea Raab, Joerg Feldmann, and Steve P. McGrath, Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation. Plant Physiol, November 2002, Vol. 130, pp. 1552-1561. 18 days' hydroponic experiment with varying concentrations of arsenate and P. Within 8 h, 50% to 78% of the As taken up is distributed to the fronds, which take from 1.3 to 6.7 times more As than the roots do. No P for 8 days increases the arsenate's maximum net influx by 2.5-fold; the plants then absorbs 10 times more arsenate than arsenite. If on the other hand the P supply is increased, As uptake decreases - with a greater effect on the roots than on the shoots. More arsenate decreases the P concentration in the roots, but not in the fronds. P in the uptake solution markedly decreases arsenate uptake. The presence or absence of P does not affect the uptake of arsenite, which translocates more easily than arsenate.
- ^
[5] C. Tu, L.Q. Ma and B. Bondada, Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation. 'Plant Physiology' journal 138:461-469 (April 2005)
- ^ [6] Gui-Lan Duan, Y.-G. Zhu, Y.-P. Tong, C. Cai and R. Kneer, Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator. Plant Physiology 138:461-469 (2005). Yeast (Saccharomyces c.) has an arsenate reductase, Acr2p, that uses glutathione as the electron donor. Pteris vit. has an arsenate reductase with the same reaction mechanism, and the same substrate specificity and sensitivity toward inhibitors (P as a competitive inhibitor, arsenite as a noncompetitive inhibitor)
- ^ Priel 1995
- ^ a b c d Gurta et al. 1994
- ^ a b c d e [7] L.E. Bennetta, J.L. Burkheada, K.L. Halea, N. Terry, M. Pilona and E.A. H. Pilon-Smits. Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings.
- ^ a b c d e [8] Phytoremediation of radionuclides.
- ^ a b c d e [9] J.K. Lan, Recent developments of phytoremediation. Journal of Geological Hazards and Environment Preservation/Dizhi Zaihai Yu Huanjing Baohu (J. Geol. Hazards Environ. Preserv.). Vol. 15, no. 1, pp. 46-51. Mar 2004.
- ^ Tiemmann et al. 1994
- ^ Sen et al. 1987
- ^ a b c d Srivastav 1994
- ^ Wild 1974
- ^ Brooks & Yang 1984
- ^ a b c d e f g [10] T.A. Delorme, J.V. Gagliardi, J.S. Angle and R.L. Chaney. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Conseil National de Recherches du Canada. Can. J. Microbiol./Rev. can. microbiol. 47(8): 773-776 (2001)
- ^ a b c d e [11] Majeti Narasimha Vara Prasad, Nickelophilous plants and their significance in phytotechnologies. Braz. J. Plant Physiol. Vol.17 no.1 Londrina Jan./Mar. 2005
- ^ a b c d e f g h i j Baker & Brooks, 1989
- ^ a b c d e f g [12] E. Lombi, F.J. Zhao, S.J. Dunham et S.P. McGrath, Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction. Journal of Environmental Quality 30:1919-1926 (2001)
- ^ [13] R.S. Morrison, R.R. Brooks, R.D. Reeves and F. Malaisse. Copper and cobalt uptake by metallophytes from Zaïre. Plant and Soil, Volume 53, Number 4 / December, 1979
- ^ [14] R. R. Brooks, Copper and cobalt uptake by Haumaniustrum species.
- ^ Baker & Walker 1990
- ^ Atri 1983
- ^ a b [15] S.D. Siciliano, J.J. Germida, K. Banks and C. W. Greer, Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial. Applied and Environmental Microbiology, January 2003, p. 483-489, Vol. 69, No. 1
- ^ a b c Phytoremediation Decision Tree, ITRC
- ^ [16] Mark P. de Souza, Dara Chu, May Zhao, Adel M. Zayed, Steven E. Ruzin, Denise Schichnes, and Norman Terry, Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian mustard, Plant Physiol. (1999) 119: 565-574
- ^ Average Se concentration of 22 µg L-1 supplied over a 24-d experimental period.
- ^ X-ray absorption spectroscopy speciation analysis.
- ^ [17] Z.-Q. Lin, M.P. de Souza, I. J. Pickering and N. Terry. Evaluation of the Macroalga, Muskgrass, for the Phytoremediation of Selenium-Contaminated Agricultural Drainage Water by Microcosms. Journal of Environmental Quality 2002, 31:2104-2110
|