To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Nondestructive testingNondestructive testing (NDT), also called nondestructive evaluation (NDE) and nondestructive inspection (NDI), is testing that does not destroy the test object. NDE is vital for constructing and maintaining all types of components and structures. To detect different defects such as cracking and corrosion, there are different methods of testing available, such as X-ray (where cracks show up on the film) and ultrasound (where cracks show up as an echo blip on the screen). This article is aimed mainly at industrial NDT, but many of the methods described here can be used to test the human body. In fact methods from the medical field have often been adapted for industrial use, as was the case with Phased array ultrasonics and Computed radiography. While destructive testing usually provides a more reliable assessment of the state of the test object, destruction of the test object usually makes this type of test more costly to the test object's owner than nondestructive testing. Destructive testing is also inappropriate in many circumstances, such as forensic investigation. That there is a tradeoff between the cost of the test and its reliability favors a strategy in which most test objects are inspected nondestructively; destructive testing is performed on a sampling of test objects that is drawn randomly for the purpose of characterizing the testing reliability of the nondestructive test.
The need for NDTIt is very difficult to weld or mold a solid object that has no risk of breaking in service, so testing at manufacture and during use is often essential. During the process of casting a metal object, for example, the metal may shrink as it cools, and crack or introduce voids inside the structure. Even the best welders (and welding machines) do not make 100% perfect welds. Some typical weld defects that need to be found and repaired are lack of fusion of the weld to the metal and porous bubbles inside the weld, both of which could cause a structure to break or a pipeline to rupture. During their service lives, many industrial components need regular nondestructive tests to detect damage that may be difficult or expensive to find by everyday methods. For example:
Over the past centuries, swordsmiths, blacksmiths, and bell-makers would listen to the ring of the objects they were creating to get an indication of the soundness of the material. The wheel-tapper would test the wheels of locomotives for the presence of cracks, often caused by fatigue — a function that is now carried out by instrumentation and referred to as the acoustic impact technique. Notable events in early industrial NDT
(Source: Hellier, 2001) Note the number of advancements made during the WWII era, a time when industrial quality control was growing in importance. ApplicationsNDT is used in a variety of settings that covers a wide range of industrial activity.
Methods and techniquesNDT is divided into various methods of nondestructive testing, each based on a particular scientific principle. These methods may be further subdivided into various techniques. The various methods and techniques, due to their particular natures, may lend themselves especially well to certain applications and be of little or no value at all in other applications. Therefore choosing the right method and technique is an important part of the performance of NDT.
Terminology
(Source: ASTM E1316 in 'Vol. 03.03 NDT) Reliability and statisticsDefect detection tests are among the more commonly employed of non-destructive tests. The evaluation of NDT reliability commonly contains two statistical errors. First, most tests fail to define the objects that are called "sampling units" in statistics; it follows that the reliability of the tests cannot be established. Second, the literature usually misuses statistical terms in such a way as to make it sound as though sampling units are defined. These two errors may lead to incorrect estimates of probability of detection. [2] [3]. Further readingBooks
NDT journals
NDT research institutes
See also
Categories: Nondestructive testing | Materials science |
||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Nondestructive_testing". A list of authors is available in Wikipedia. |