To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
NIH shiftAn NIH shift is a chemical rearrangement where a hydrogen atom on an aromatic ring undergoes an intramolecular migration primarily during a hydroxylation reaction. This process is also known as a 1,2-hydride shift. These shifts are often studied and observed by isotopic labeling. An example of an NIH shift is shown below: Additional recommended knowledgeIn this example, a hydrogen atom has been isotopically labeled using deuterium (shown in red). As the hydroxylase adds a hydroxyl (the -OH group), the labeled site shifts one position around the aromatic ring relative to the stationary methyl group (-CH3). Several hydroxylase enzymes are believed to incorporate an NIH shift in their mechanism, including 4-hydroxyphenylpyruvate dioxygenase and the tetrahydrobiopterin dependent hydroxylases. The name NIH shift arises from the U.S. National Institutes of Health from where studies first reported observing this transformation.
References
Categories: Enzymes | Posttranslational modification | Reaction mechanisms |
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "NIH_shift". A list of authors is available in Wikipedia. |