To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Molybdenum disulfide
Molybdenum disulfide is the inorganic compound with the formula MoS2. This black crystalline sulfide of molybdenum occurs as the mineral molybdenite. More so than other transition metal chalcogenides, MoS2 is unreactive, being unaffected by dilute acids. In terms of its appearance and feel, molybdenum disulfide is similar to graphite and indeed it is widely used as a lubricant.[1][2] Additional recommended knowledge
ProductionMolybdenite ore is processed by flotation to give relatively pure MoS2, the main contaminant being carbon. MoS2 also arises by the thermal treatment of virtually all molybdenum compounds with hydrogen sulfide. Structure and basic propertiesIn MoS2, each Mo(IV) center is trigonal prismatic, being bound to six sulfide ligands, each of which is pyramidal. The trigonal prisms are interconnected to give a layered structure, wherein molybdenum atoms are sandwiched between layers of sulfur atoms.[3] Due to the weak van der Waals interactions between the sheets of sulfide atoms, MoS2 has a low coefficient of friction, resulting in its lubricating properties. Other layered inorganic materials exhibit lubricating properties (collectively known as solid lubricants or dry lubricants) including graphite, which requires volatile additives, and hexagonal boron nitride.[4] MoS2 is diamagnetic and a semiconducting. Use as lubricantWith a high melting point (1185 °C) and good chemical stability, MoS2 is a versatile solid lubicant. In air, it degrades at oxidizing in air 350 °C, which limits the range of its use as a lubricant. Sliding friction tests of MoS2 using a pin on disc tester at low loads (0.1-2N) give friction coefficient values of <0.1. Finely-powdered MoS2 with particle sizes in the range of 1-100 µm is a common dry lubricant. It is also often mixed into various oils and greases in order to lend its lubrication properties even in cases of almost complete oil loss - finding an important use in aircraft engines. It is often used in two-stroke engines, e.g., motorcycle engines. MoS2 grease is recommended for CV and universal joints. When added to plastics, MoS2 forms a composite with improved strength as well as reduced friction. Polymers that have been filled with MoS2 include nylon, with the trade name Nylatron, and Teflon. In addition, it can be combined with polymer resin to apply low friction coatings to engineering components. Self-lubricating composite coatings for high-temperature applications were developed at the Oak Ridge National Laboratory. A composite coating of molybdenum disulfide and titanium nitride was created on the surface of parts by chemical vapor deposition. [1] Military and ballistic usesDuring the Vietnam War, the molybdenum disulfide product "Dri-Slide" was used to lubricate weapons, although it was supplied from private sources, not the military.[2] MoS2-coatings allow bullets easier passage through the rifle barrel with less deformation and better ballistic accuracy. Future Developments (lubrication)There are currently no clear lubrication alternatives to molybdenum disulfide or the very similar tungsten disulfide that can resist temperatures higher than 350°C in oxidizing environments. Due to the low-friction properties of MoS2 even at several hundred degrees centigrade, research has been focusing on the development of compacted oxide layer glazes for use in metallic sliding systems. However, because of the physically-unstable nature of the compound at this temperature, use for it in the near-future has not proven practical. Use in petrochemistrySynthetic MoS2 is employed as a catalyst for desulfurization in petroleum refineries, e.g., hydrodesulfurization.[5] The effectiveness of the MoS2 catalysts is enhanced by doping with small amounts of cobalt, and the intimate mixture is supported on alumina. Such catalysts are generated in situ by treating molybdate/cobalt-impregnated alumina with H2S or an equivalent reagent. References
Categories: Molybdenum compounds | Sulfides | Semiconductor materials |
|||||||||||||||||||||||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Molybdenum_disulfide". A list of authors is available in Wikipedia. |