To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Molecular electronic transitionMolecular electronic transitions take place when valence electrons in a molecule are excited from one energy level to a higher energy level. The energy change associated with this transition provides information on the structure of a molecule and determines many molecular properties such as color. The relationship between the energy involved in the electronic transition and the frequency of radiation is given by Planck's law. Additional recommended knowledgeThe electronic transitions in organic compounds can be determined by UV/VIS spectroscopy provided that transitions in the UV or visible range of the electromagnetic spectrum exist for this compound. Electrons residing in the HOMO of a sigma bond can get excited to the LUMO of that bond. This process is written down as a σ → σ* transition. Likewise promotion of an electron from a π-bonding orbital to an antibonding π orbital* is denoted as a π → π* transition. Auxochromes with Free electron pairs denoted as n have their own transitions, as do aromatic pi bond transitions. The following molecular electronic transitions exist: In addition to these assignments, electronic transitions also have so-called bands associated with them. The following bands are defined: the R-band from the German radikalartig or radical-like, the K-band from the German Konjugierte or conjugated, B-band from benzoic and the E-band from ethylenic (system devised by A. Burawoy in 1930). For example the absorption spectrum for ethane shows a σ → σ* transition at 135 nm and that of water a n → π* transition at 167 nm with an extinction coefficient of 7,000. Benzene has three aromatic π → π* transitions; two E-bands at 180 and 200 nm and one B-band at 255 nm with extinction coefficients respectively 60,000 , 8,000 and 215. These absorptions are not narrow bands but are generally broad because the electronic transitions are superimposed on the other molecular energy states.
Spectral lines are associated with atomic electronic transitions and polyatomic gases have their own absorption band system.
References
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Molecular_electronic_transition". A list of authors is available in Wikipedia. |