To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Clearance (medicine)In medicine, the clearance is a measurement of the renal excretion ability. Although clearance may also involve other organs than the kidney, it is almost synonymous with renal clearance or renal plasma clearance. It is done mainly by glomerular filtration, but also by secernation from the peritubular capillaries to the nephron. Additional recommended knowledge
DefinitionWhen referring to the function of the kidney, clearance of a substance is the inverse of the time constant that describes its removal rate from the body divided by its volume of distribution (or total body water). In steady-state, it is defined as the mass generation rate of a substance (which equals the mass removal rate) divided by its concentration in the blood. It is considered to be the amount of liquid filtered out of the blood that gets processed by the kidneys or the amount of blood cleaned per time because it has the units of a volumetric flow rate [ volume / time ]. However, it does not refer to a real value; "[t]he kidney does not completely remove a substance from the total renal plasma flow."[1] From a mass transfer perspective[2] and physiologically, volumetric blood flow (to the dialysis machine and/or kidney) is only one of several factors that determine blood concentration and removal of a substance from the body. Other factors include the mass transfer coefficient, dialysate flow and dialysate recirculation flow for hemodialysis, and the glomerular filtration rate and the tubular reabsorption rate, for the kidney. A physiologic interpretation of clearance (at steady-state) is that clearance is a ratio of the mass generation and blood (or plasma) concentration. Its definition follows from the differential equation that describes exponential decay and is used to model kidney function and hemodialysis machine function:
Where:
From the above definitions it follows that is the first derivative of concentration with respect to time, i.e. the change in concentration with time. It is derived from a mass balance. Derivation of equationEquation 1 is derived from a mass balance: where:
In words, the above equation states:
Since and Equation A1 can be re-written as: If one lumps the in and gen. terms together, i.e. and divides by Δt the result is a difference equation: If one applies the limit one obtains a differential equation: Using the chain rule this can be re-written as: If one assumes that the volume change is not significant, i.e. , the result is Equation 1: Solution to the differential equationThe general solution of the above differential equation (1) is: Where:
Steady-state solutionThe solution to the above differential equation (9) at time infinity (steady state) is:
The above equation (10a) can be re-written as:
The above equation (10b) makes clear the relationship between mass removal and clearance. It states that (with a constant mass generation) the concentration and clearance vary inversely with one another. If applied to creatinine (i.e. creatinine clearance), it follows from the equation that if the serum creatinine doubles the clearance halves and that if the serum creatinine quadruples the clearance is quartered. Measurement of renal clearanceRenal clearance can be measured with a timed collection of urine and an analysis of its composition with the aid of the following equation (which follows directly from the derivation of (10b)):
Where:
Note - the above equation (11) is valid only for the steady-state condition. If the substance being cleared is not at a constant plasma concentration (i.e. not at steady-state) K must be obtained from the (full) solution of the differential equation (9). See also
References
Categories: Pharmacokinetics | Pharmacology |
|||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Clearance_(medicine)". A list of authors is available in Wikipedia. |