To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Maser
A maser is a device that produces coherent electromagnetic waves through amplification due to stimulated emission. Historically the term came from the acronym "Microwave Amplification by Stimulated Emission of Radiation", although modern masers emit over a broad portion of the electromagnetic spectrum. This has led some to replace "microwave" with "molecular" in the acronym, as suggested by Townes.[1] When optical coherent oscillators were first developed, they were called optical masers, but it has become more common to refer to these as lasers. See the section on terminology below for more on this. Additional recommended knowledge
HistoryTheoretically, reflecting principles previously discussed by Joseph Weber at the June 1952 conference of the Institute of Radio Engineers,[2] the principle of the maser was described by Nikolay Basov and Alexander Prokhorov from Lebedev Institute of Physics at an All-Union Conference on Radio-Spectroscopy held by USSR Academy of Sciences in May 1952. They subsequently published their results in October 1954. Independently, Charles H. Townes, J. P. Gordon, and H. J. Zeiger built the first maser at Columbia University in 1953. The device used stimulated emission in a stream of energized ammonia molecules to produce amplification of microwaves at a frequency of 24 gigahertz. Townes later worked with Arthur L. Schawlow to describe the principle of the optical maser, or laser, which Theodore H. Maiman first demonstrated in 1960. For their research in this field Townes, Basov and Prokhorov were awarded the Nobel Prize in Physics in 1964. TechnologyThe maser is based on the principle of stimulated emission proposed by Albert Einstein in 1917. When atoms have been put into an excited energy state, they can amplify radiation at the proper frequency. By putting such an amplifying medium in a resonant cavity, feedback is created that can produce coherent radiation. Some common types of masers
The dual noble gas maser is an example of a masing medium which is nonpolar.[3] UsesMasers serve as high precision frequency references. These "atomic frequency standards" are one form of atomic clock. They are also used as electronic amplifiers in radio telescopes. Hydrogen maserToday, the most important type of maser is the hydrogen maser which is currently used as an atomic frequency standard. Together with other types of atomic clocks, they constitute the "Temps Atomique International" or TAI. This is the international time scale, which is coordinated by the Bureau International des Poids et Mesures, or BIPM. It was Norman Ramsey and his colleagues who first realized this device. Today's masers are identical to the original design. The maser oscillation relies on stimulated emission between two hyperfine levels of atomic hydrogen. Here is a brief description of how it works:
Astrophysical masersStimulated microwave and radio wave emission is observed in astronomy, and this is usually called "masing", even in the absence of the resonant feedback that would be required for a true maser. Technically this form of stimulated emission is called superradiant emission, and it is closely associated with lasing and masing. Such emission is observed from molecules such as water (H2O), hydroxyl radicals (OH), methanol (CH3OH), formaldehyde (CH2O), and silicon monoxide (SiO). Maser-like stimulated emission also occurs in nature in interstellar space. Water molecules in star-forming regions can undergo a population inversion and emit radiation at 22 GHz, creating the brightest spectral line in the radio universe. Some water masers also emit radiation from a vibrational mode at 96 GHz.
TerminologyThe meaning of the term maser has changed slightly since its introduction. Initially the acronym was universally given as "microwave amplification by stimulated emission of radiation," which described devices which emitted in the microwave region of the electromagnetic spectrum. The principle of stimulated emission has since been extended to more devices and frequencies, and so the original acronym is sometimes modified, as suggested by Charles H. Townes,[4] to "molecular amplification by stimulated emission of radiation." Some have asserted that Townes's efforts to extend the acronym in this way were primarily motivated by the desire to increase the importance of his invention, and his reputation in the scientific community.[5] When the laser was developed, Townes and Schawlow and their colleagues at Bell Labs pushed the use of the term optical maser, but this was largely abandoned in favor of laser, coined by their rival Gordon Gould.[6] In modern usage, devices that emit in the X-ray through infrared portions of the spectrum are typically called lasers, and devices that emit in the microwave region and below are commonly called masers, regardless of whether they emit microwaves or other frequencies. Gould originally proposed distinct names for devices that emit in each portion of the spectrum, including grasers (gamma ray lasers), xasers (x-ray lasers), uvasers (ultraviolet lasers), lasers (visible lasers), irasers (infrared lasers), masers (microwave masers), and rasers (RF masers). Most of these terms never caught on, however, and all have now become (apart from in science fiction) obsolete except for maser and laser. Masers in science fictionMasers often appear as weapons in science fiction movies and novels. Their characteristics often differ from those of real masers, however, and it is doubtful whether a practical maser weapon such as these can actually be made. Some notable science fiction appearances of masers:
See alsoReferences
Categories: Lasers | Microwave technology |
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Maser". A list of authors is available in Wikipedia. |