To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
KetogenesisKetogenesis is the process by which ketone bodies are produced as a result of fatty acid breakdown. Additional recommended knowledge
ProductionKetone bodies are produced mainly in the mitochondria of liver cells. Its synthesis occurs in response to low carbohydrate levels in the blood, and after exhaustion of cellular carbohydrate stores, such as glycogen. The production of ketone bodies is then initiated to make available energy that is stored as fatty acids also known as lipids. Fatty acids are enzymatically broken down in β-oxidation to form acetyl-CoA. Normally, acetyl-CoA is further oxidized and its energy transferred as electrons to NADH, FADH2, and GTP in the citric acid cycle (TCA cycle). However, if the amounts of acetyl-CoA generated in fatty-acid β-oxidation challenge the processing capacity of the TCA cycle or if activity in the TCA cycle is low due to low amounts of intermediates such as oxaloacetate, acetyl-CoA is then used instead in biosynthesis of ketone bodies via acetoacyl-CoA and β-hydroxy-β-methylglutaryl-CoA (HMG-CoA). Besides its role in the synthesis of ketone bodies, HMG-CoA is also an intermediate in the synthesis of cholesterol. Types of ketone bodiesThe three ketone bodies are:
Each of these compounds are synthesized from acetyl-CoA molecules. RegulationKetogenesis may or may not occur, depending on levels of available carbohydrates in the cell or body. This is closely related to the paths of acetyl-CoA:
PathologyKetone bodies are created at moderate levels in everyone's bodies, such as during sleep and other times when no carbohydrates are available. However, when ketogenesis is happening at higher than normal levels, the body is said to be in a state of ketosis. It is unknown whether ketosis has negative long-term effects or not. Both acetoacetate and beta-hydroxybutyrate are acidic, and, if levels of these ketone bodies are too high, the pH of the blood drops, resulting in ketoacidosis. This is very rare, and, in general, happens only in untreated Type I diabetes (see diabetic ketoacidosis) and in alcoholics after binge drinking and subsequent starvation (see alcoholic ketoacidosis). See also
|
|||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Ketogenesis". A list of authors is available in Wikipedia. |