To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Inverse scattering problemIn physics, in the area of scattering theory, the inverse scattering problem is the problem of determining the characteristics of an object (its shape, internal constitution, etc.) from measurement data of radiation or particles scattered from the object. Additional recommended knowledgeIn mathematics, inverse scattering refers to the determination of the solutions of a set of differential equations based on known asymptotic solutions, that is, on solving the S-matrix. Examples of equations that have been solved by inverse scattering are the Schroedinger equation, the KdV equation and the KP equation. It is the inverse problem to the direct scattering problem, which is determining the distribution of scattered radiation/particle flux basing on the characteristics of the scatterer. Since its early statement for radiolocation, the problem has found vast number of applications, such as echolocation, geophysical survey, nondestructive testing, medical imaging, quantum field theory, to name just a few. See also: Inverse scattering transform |
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Inverse_scattering_problem". A list of authors is available in Wikipedia. |