To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Intrinsic viscosityIntrinsic viscosity is a measure of a solute's contribution to the viscosity η of a solution. It is defined as where η0 is the viscosity in the absence of the solute and φ is the volume fraction of the solute in the solution. As defined here, the intrinsic viscosity is a dimensionless number. When the solute particles are rigid spheres, the intrinsic viscosity equals 2.5, as shown first by Albert Einstein. In practical settings, φ is usually solute mass concentration, and the units of intrinsic viscosity are inverse concentration (deciliters per gram). Additional recommended knowledge
Formulae for rigid spheroidsGeneralizing from spheres to spheroids with an axial semiaxis a (i.e., the semiaxis of revolution) and equatorial semiaxes b, the intrinsic viscosity can be written where the constants are defined The J coefficients are the Jeffery functions General ellipsoidal formulaeIt is possible to generalize the intrinsic viscosity formula from spheroids to arbitrary ellipsoids with semiaxes a, b and c. Frequency dependenceThe intrinsic viscosity formula may also be generalized to include a frequency dependence. ApplicationsThe intrinsic viscosity is very sensitive to the axial ratio of spheroids, especially of prolate spheroids. For example, the intrinsic viscosity can provide rough estimates of the number of subunits in a protein fiber composed of a helical array of proteins such as tubulin. More generally, intrinsic viscosity can be used to assay quaternary structure. In polymer chemistry intrinsic viscosity is related to molar mass through the Mark-Houwink equation.A practical method for the determination of intrinsic viscosity is with a Ubbelohde viscometer. References
|
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Intrinsic_viscosity". A list of authors is available in Wikipedia. |