To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Colloid
Colloidal systems are subjects of Interface and Colloid Science. There is IUPAC Technical Report[1] prepared by a group of most known world experts on the subject of interfacial Double Layer and related electrokinetic phenomena. Because the size of the dispersed phase may be hard to measure, and because colloids look like solutions, colloids are sometimes characterized by their properties. For example, if a colloid has a solid phase dispersed in a liquid, the solid particles will not pass through a membrane, whereas the dissolved ions or molecules of a solution will pass through a membrane. In other words, dissolved components will diffuse through a membrane through which dispersed colloidal particles will not. Some colloids are translucent because of the Tyndall effect, which is the scattering of light by particles in the colloid. Other colloids may be opaque or have a slight color. Many familiar substances, including butter, milk, cream, aerosols (fog, smog, smoke), asphalt, inks, paints, glues, and sea foam, are colloids. This field of study was introduced in 1861 by Scottish scientist Thomas Graham. Additional recommended knowledge
Classification of colloidsColloids can be classified as follows:
In some cases, a colloid can be considered as a homogeneous (not heterogeneous) mixture. This is because the distinction between "dissolved" and "particulate" matter can be sometimes a matter of approach. HydrocolloidsA hydrocolloid is defined as a colloid system wherein the colloid particles are dispersed in water. A hydrocolloid has colloid particles spread throughout water and depending on the quantity of water available can take on different states, e.g., gel or sol (liquid). Hydrocolloids can be either irreversible (single-state) or reversible. For example, agar, a reversible hydrocolloid of seaweed extract, can exist in a gel and sol state, and alternate between states with the addition or elimination of heat. Many hydrocolloids are derived from natural sources. For example, carrageenan is extracted from seaweed, gelatin has bovine (cow) and fish origins, and pectin is extracted from citrus peel and apple pomace. Jell-O (trade mark Jell-O), the well-known dessert, is made from gelatin powder, another effective hydrocolloid. Hydrocolloids are employed in food mainly to influence texture or viscosity (e.g., a sauce). Hydrocolloids are also used in skin-care and wound-dressing. Interaction between colloid particlesThe following forces play an important role in the interaction of colloid particles:
Stabilization of a colloidal dispersionStabilization serves to prevent colloids from aggregating. Steric stabilization and electrostatic stabilization are the two main mechanisms for colloid stabilization. Electrostatic stabilization is based on the mutual repulsion of like electrical charges. Different phases generally have different charge affinities, so that a charge double-layer forms at any interface. Small particle sizes lead to enormous surface areas, and this effect is greatly amplified in colloids. In a stable colloid, mass of a dispersed phase is so low that its buoyancy or kinetic energy is too little to overcome the electrostatic repulsion between charged layers of the dispersing phase. The charge on the dispersed particles can be observed by applying an electric field: all particles migrate to the same electrode and therefore must all have the same sign charge! Destabilizing a colloidal dispersionUnstable colloidal dispersions form flocs as the particles aggregate due to interparticle attractions. In this way photonic glasses can be grown. This can be accomplished by a number of different methods:
Unstable colloidal suspensions of low-volume fraction form clustered liquid suspensions, wherein individual clusters of particles fall to the bottom of the suspension (or float to the top if the particles are less dense than the suspending medium) once the clusters are of sufficient size for the Brownian forces that work to keep the particles in suspension to be overcome by gravitational forces. However, colloidal suspensions of higher-volume fraction form colloidal gels with viscoelastic properties. Viscoelastic colloidal gels, such as toothpaste, flow like liquids under shear, but maintain their shape when shear is removed. It is for this reason that toothpaste can be squeezed from a toothpaste tube, but stays on the toothbrush after it is applied. Colloids as a model system for atomsIn physics, colloids are an interesting model system for atoms. Micron-scale colloidal particles are large enough to be observed by optical techniques such as confocal microscopy. Many of the forces that govern the structure and behavior of matter, such as excluded volume interactions or electrostatic forces, govern the structure and behavior of colloidal suspensions. For example, the same techniques that can be used to model ideal gases can be used to model the behavior of a hard sphere colloidal suspension. In addition, phase transitions in colloidal suspensions can be studied in real time using optical techniques, and are analogous to phase transitions in liquids. Colloids in biologyIn the early 20th century, before enzymology was well understood, colloids were thought to be the key to the operation of enzymes; i.e., the addition of small quantities of an enzyme to a quantity of water would, in some fashion yet to be specified, subtly alter the properties of the water so that it would break down the enzyme's specific substrate, such as a solution of ATPase breaking down ATP. Furthermore, life itself was explainable in terms of the aggregate properties of all the colloidal substances that make up an organism. As more detailed knowledge of biology and biochemistry developed, the colloidal theory was replaced by the macromolecular theory, which explains an enzyme as a collection of identical huge molecules that act as very tiny machines, freely moving about between the water molecules of the solution and individually operating on the substrate, no more mysterious than a factory full of machinery. The properties of the water in the solution are not altered, other than the simple osmotic changes that would be caused by the presence of any solute. References
Further reading
See also
Categories: Chemical mixtures | Colloidal chemistry | Condensed matter physics | Soft matter |
||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Colloid". A list of authors is available in Wikipedia. |