To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Cumene processCumene process is an industrial process for developing phenol and acetone from benzene and propylene. The term stems from cumene (isopropyl benzene), the intermediate material during the process. Additional recommended knowledgeThis process converts two relatively cheap starting materials, benzene and propylene, into two more valuable ones, phenol and acetone. Other reactants required are oxygen from air and small amounts of a radical initiator. Most of the worldwide production of phenol and acetone is now based on this method. The overall chemical process is summarised below. Technical descriptionBenzene and propylene are compressed together to a pressure of 30 standard atmospheres at 250 °C (482° F) in presence of a catalytic Lewis acid. Phosphoric acid is often favored over aluminum halides. Cumene is formed in the gas-phase Friedel-Crafts alkylation of benzene by propylene: Cumene is oxidized in slightly basic conditions in presence of a radical initiator, which removes the tertiary benzylic hydrogen from cumene and hence forms a cumene radical: This cumene radical then bonds with an oxygen molecule to give cumene hydroperoxide radical, which in turn forms cumene hydroperoxide (C6H5C(CH3)2-O-O-H) by abstracting benzylic hydrogen from another cumene molecule. This latter cumene converts into cumene radical and feeds back into subsequent chain formations of cumene hydroperoxides. A pressure of 5 atm is used to ensure that the unstable peroxide is kept in liquid state. Cumene hydroperoxide is then hydrolysed in an acidic medium to give phenol and acetone. Loss of a water molecule from the hydroperoxide leaves an electron-deficient oxygen. Migration of the phenyl to the oxygen leads to a more stable resonance hybridized structure of tertiary benzylic radical, which in turn produce acetone and phenol after an attachment of a water molecule and rearrangement. Research suggests the loss of water molecule and phenyl migration may take place simultaneously, in other words the step of the mechanism is concerted[citation needed]. The products are extracted by distillation. See also
Categories: Organic reactions | Chemical processes | Unit processes |
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Cumene_process". A list of authors is available in Wikipedia. |