To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
History of mass spectrometryThe history of mass spectrometry dates back more than one hundred years and has its roots in physical and chemical studies regarding the nature of matter. The study of gas discharges in the mid 19th century led to the discovery of anode and cathode rays, which turned out to be positive ions and electrons. Improved capabilities in the separation of these positive ions enabled the discovery of stable isotopes of the elements. The first such discovery was with the atom neon, which was shown by mass spectrometry to have at least two stable isotopes: neon-20 with 10 protons and 10 neutrons and neon-22 with 10 protons and 12 neutrons. Mass spectrometers were used in the Manhattan Project for the separation of isotopes of uranium necessary to create the atomic bomb. Additional recommended knowledge
Prout's HypothesisProut's hypothesis was an early 19th century attempt to explain the properties of the chemical elements using the internal structure of the atom. In 1815, the English chemist William Prout observed that the atomic weights that had been measured were integer multiples of the atomic weight of hydrogen.[1][2] Prout's hypothesis remained influential in chemistry throughout the 1820s. However, more careful measurements of the atomic weights, such as those compiled by Jöns Jakob Berzelius in 1828 or Edward Turner in 1832, appeared to disprove it. In particular the atomic weight of chlorine, which is 35.45 times that of hydrogen, could not at the time be explained in terms of Prout's hypothesis. It would take the better part of a century for this problem to be resolved. Canal raysIn the mid-nineteenth century, Julius Plücker investigated the light emitted in discharge tubes and the influence of magnetic fields on the glow. Later, in 1869, Johann Wilhelm Hittorf studied discharge tubes with energy rays extending from a negative electrode, the cathode. These rays produced a fluorescence when they hit a tube's glass walls, and when interrupted by a solid object they cast a shadow. Canal rays, also called Anode rays, were observed by Eugen Goldstein, in 1886. Goldstein used a gas discharge tube which had a perforated cathode. The rays are produced in the holes (canals) in the cathode and travels in a direction opposite to the "cathode rays," which are streams of electrons. Goldstein called these positive rays "Kanalstrahlen" - canal rays. In 1907 a study of how this "ray" was deflected in a magnetic field, revealed that the particles making up the ray were not all the same mass Discovery of isotopes
In 1913, as part of his exploration into the composition of canal rays, J. J. Thomson channeled a stream of ionized neon through a magnetic and an electric field and measured its deflection by placing a photographic plate in its path. Thomson observed two patches of light on the photographic plate (see image on right), which suggested two different parabolas of deflection. Thomson concluded that the neon gas was composed of atoms of two different atomic masses (neon-20 and neon-22). Thomson's student Francis William Aston continued the research at the Trinity College, building the first full functional mass spectrometer in 1919. He was able to identify the isotopes of chlorine with 35 an 37, bromine 79 and 78, krypton with 78, 80, 82, 83, 84 and 86, giving a proof of that the natural occurring elements are comprised of a combination of isotopes. The use of electromagnetic focusing in mass spectrograph which rapidly allowed him to identify no fewer than 212 of the 287 naturally occurring isotopes. In 1921 F. W. Aston became a fellow of the famous Royal Society. His work on isotopes also led to his formulation of the Whole Number Rule which states that "the mass of the oxygen isotope being defined, all the other isotopes have masses that are very nearly whole numbers," a rule that was used extensively in the development of nuclear energy. The exact mass of many isotopes was measured leading to the result that hydrogen has a 1% higher mass than expected by the average mass of the other elements. Aston speculated about the subatomic energy and the use of it in 1936. In 1918, Arthur Jeffrey Dempster developed the first modern mass spectrometer, which was over 100 times more accurate than previous versions, and established the basic theory and design of mass spectrometers that is still used to this day. Dempster's research over his career centered around the mass spectrometer and its applications, leading in 1935 to his discovery of the uranium isotope 235U. This isotope's ability to cause a rapidly expanding fission nuclear chain reaction allowed the development of the atom bomb and nuclear power. Manhattan ProjectA Calutron is a sector mass spectrometer that was used for separating the isotopes of uranium developed by Ernest O. Lawrence[3] during the Manhattan Project and was similar to the Cyclotron invented by Lawrence. Its name is a concatenation of Cal. U.-tron, in tribute to the University of California, Lawrence's institution and the contractor of the Los Alamos laboratory.[4] They were implemented for industrial scale uranium enrichment at the Oak Ridge, Tennessee Y-12 plant established during the war and provided much of the uranium used for the "Little Boy" nuclear weapon, which was dropped onto Hiroshima in 1945. Development of gas chromatography-mass spectrometryThe use of a mass spectrometer as the detector in gas chromatography was developed during the 1950s by Roland Gohlke and Fred McLafferty.[5][6] The development of affordable and miniaturized computers has helped in the simplification of the use of this instrument, as well as allowed great improvements in the amount of time it takes to analyse a sample. Fourier transform mass spectrometryFourier transform ion cyclotron resonance mass spectrometry was developed by Alan G. Marshall and Melvin B. Comisarow at the University of British Columbia in 1974.[7] The inspiration was earlier developments in conventional ICR and Fourier Transform Nuclear Magnetic Resonance (FT-NMR) spectroscopy. Soft ionization methodsField desorption ionization was first reported by Beckey in 1969.[8] In field ionization, a high-potential electric field is applied to an emitter with a sharp surface, such as a razor blade, or more commonly, a filament from which tiny "whiskers" have been grown. This produces a very high electric field in which electron tunneling can result in ionization of gaseous analyte molecules. FI produces mass spectra with little or no fragmentation, dominated by molecular radical cations M+. and occasionally protonated molecules [M + H] + . Chemical ionization was developed in the 1960s.[9][10][11] Ionization of sample (analyte) is achieved by interaction of its molecules with reagent ions. The analyte is ionized by ion-molecule reactions during collisions in the source. The process may involve transfer of an electron, a proton or other charged species between the reactants. This is a less energetic procedure than electron ionization and the ions produced are, for example, protonated molecules: [M + H]+. These ions are often relatively stable, tending not to fragment as readily as ions produced by electron ionization. Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization technique used in mass spectrometry, allowing the analysis of biomolecules (biopolymers such as proteins, peptides and sugars) and large organic molecules (such as polymers, dendrimers and other macromolecules), which tend to be fragile and fragment when ionized by more conventional ionization methods. It is most similar in character to electrospray ionization both in relative softness and the ions produced (although it causes much fewer multiply charged ions). The term was first used in 1985 by Franz Hillenkamp, Michael Karas and their colleagues.[12] These researchers found that the amino acid alanine could be ionized more easily if it was mixed with the amino acid tryptophan and irradiated with a pulsed 266 nm laser. The tryptophan was absorbing the laser energy and helping to ionize the non-absorbing alanine. Peptides up to the 2843 Da peptide melittin could be ionized when mixed with this kind of “matrix”.[13] The breakthrough for large molecule laser desorption ionization came in 1987 when Koichi Tanaka of Shimadzu Corp. and his co-workers used what they called the “ultra fine metal plus liquid matrix method” that combined 30 nm cobalt particles in glycerol with a 337 nm nitrogen laser for ionization.[14] Using this laser and matrix combination, Tanaka was able to ionize biomolecules as large as the 34,472 Da protein carboxypeptidase-A. Tanaka received one-quarter of the 2002 Nobel Prize in Chemistry for demonstrating that, with the proper combination of laser wavelength and matrix, a protein can be ionized.[15] Karas and Hillenkamp were subsequently able to ionize the 67 kDa protein albumin using a nicotinic acid matrix and a 266 nm laser.[16] Further improvements were realized through the use of a 355 nm laser and the cinnamic acid derivatives ferulic acid, caffeic acid and sinapinic acid as the matrix.[17] The availability of small and relatively inexpensive nitrogen lasers operating at 337 nm wavelength and the first commercial instruments introduced in the early 1990s brought MALDI to an increasing number of researchers.[18] Today, mostly organic matrices are used for MALDI mass spectrometry. Timeline19th century
20th century
21st century
See also
References
Bibliography
|
|
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "History_of_mass_spectrometry". A list of authors is available in Wikipedia. |