To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
High intensity magnetic separatorsIntroduction Additional recommended knowledgeIn the recent past the problem of removing the deleterious iron particles from a process stream had a few alternatives. Magnetic separation was typically limited and moderately effective. Magnetic separators that used permanent magnets could generate fields of low intensity only. These worked well in removing ferrous tramp but not fine paramagnetic particles. Thus high intensity magnetic separators that were effective in collecting paramagnetic particles came into existence. These focus on the separation of very fine particles that are paramagnetic. The current is passed through the coil, which creates a magnetic field, which magnetizes the expanded steel matrix ring. The matrix material being paramagnetic behaves like a magnet in the magnetic field and thereby attracts the fines. The ring is rinsed when it is in the magnetic field and all the non-magnetic particles are carried with the rinse water. Next as the ring leaves the magnetic zone the ring is flushed and a vacuum of about – 0.3 bars is applied to remove the magnetic particles attached to the matrix ring. Standard Operating procedure High Gradient Magnetic Separator is to separate magnetic & non-magnetic particles (concentrate & tails) from the feed slurry. This feed comes from intermediate thickener underflow pump through Linear Screen & Passive Matrix. Tailings go to tailing thickener & product goes to throw launder through vacuum tanks |
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "High_intensity_magnetic_separators". A list of authors is available in Wikipedia. |