To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Helium mass spectrometer
A helium mass spectrometer (often called a leak detector or helium leak detector) or improperly sniffer, is a scientific instrument, used to detect, locate and measure very small leaks, typically using a vacuum and injecting helium around a chamber or cavity. The helium mass spectrometer was initially developed in the Manhattan Project during World War II to find extremely small leaks in the gas diffusion process[1]. The leak detection method uses helium (the lightest inert gas) as a tracer and can detect (not measure), with today's technology, a flow of 5x10-12 mbar.l/s. The helium is selected primarily because it penetrates small leaks readily. Helium is also non-toxic, non-hazardous, plentiful, inexpensive, food compatible and present in the atmosphere only in minute quantities (5 ppm). Typically an helium leak detector will be used to measure leaks in the range of 10-4 mbar.l/s to 10-11 mbar.l/s.
Additional recommended knowledge
ProcessThe Helium mass spectrometer leak detection technique depends on the separation of helium from other gasses in a vacuum, which is a relatively simple procedure. It is accomplished by imparting an electrical charge to a sample of gas, pushing the sample through a magnetic field, and collecting the helium ions as they emerge. Since helium ions exit along a different path from all other ions, collection of helium is reasonably simple; and because they have a charge of electrical energy, helium ions can be counted. The current is used to drive a meter, actuate an optional audio alarm, and illuminate a display. Ionization, separation and collection takes place within the spectrometer tube, which is the heart of the system. Internal spectrometer tube operationIn the spectrometer tube, the heart of the helium mass spectrometer, the electrons produced by a hot filament enter an ion chamber under vacuum, and collide with gas molecules, creating within the chamber ions quantitively proportional to the pressure in the ion chamber. These ions are repelled out of the ion chamber, under vacuum, through the exit slit, by a repeller field. The combined electrostatic effect of the repeller, exit slit, focus plates, and ground slit collimates the ion beam so that it enters the magnetic field as a straight "ribbon" of ions. Types of leaksTypically there are two types of leaks in the detection of helium as a tracer for leak detection.
UsesHelium mass spectrometer leak detectors are used in production line industries such as refrigeration and air conditioning, automotive parts, carbonated beverage containers, food packages and aerosol packaging, as well as in the manufacture of steam products, gas bottles, fire extinguishers, tire valves, and numerous other products including all vacuum systems. Test methods
Global helium spray - vacuum testThis method requires the part to be tested to be connected to a helium leak detector. The outer surface of the part to be tested will located in some kind of a tent in which the helium concentration will be raised to 100% helium.
If leakage is encountered the small and "agile" molecules of helium will migrate through the cracks into the part. The vacuum system will carry promptly any tracer gas molecule into the analyzer cell of the magnetic sector mass spectrometer. A signal will inform the operator of the value of the leakage encountered in mbar.l/s. Local helium spray - vacuum testThis method is a small variation from the one above. It still requires the part to be tested to be connected to a helium leak detector. The outer surface of the part to be tested is being gently sprayed with a narrow shower of helium tracer gas.
If leakage is encountered the small and "agile" molecules of helium will migrate through the cracks into the part. The vacuum system will carry promptly any tracer gas molecule into the analyzer cell of the magnetic sector mass spectrometer. A signal will inform the operator of the value of the leakage encountered in mbar.l/s. Thus correlation between maximum leakage signal and location of helium spay head will allow the operator to pinpoint the leaky area. Helium charged - vacuum testIn this case the part is being pressurized (sometime this test is combined with a burst test, i.e. at 40 bars) with helium while sitting in a vacuum chamber. The vacuum chamber is connected to a vacuum pumping system and a leak detector. Once the vacuum has reached the mass spectrometer operating pressure, any helium leakage will be measured. This test method applies to a lot of component that will operate under pressure: airbag canister, evaporator, condenser, high-voltage SF6 filled swithgear. Bombing test (overpressure) - vacuum testThis method is dedicated to the objects that are supposedly sealed. First the device under test will be exposed for an extended length of time to a high helium pressure in a "bombing" chamber. If the parts is leaky, helium will be able to penetrate in the device. Latter the device will be placed in a vacuum chamber, connected to a vacuum pump and a mass spectrometer. Again, when there is a leak path, as the part is filled with helium. This tiny amount of gas will be released in the vacuum chamber and forwarded in the mass spectrometer where the leak rate will be measured. This test methods applies typically for implantable medical devices, crystal oscillator, saw filter devices. This method is not able to detect massive leak as tracer gas will be quickly pumped out during the pumping of the test chamber. Helium charged - sniffer testIn this last case the part is being pressurized with helium. The Mass spectrometer is being fitted with a special device, a sniffer probe, that allow to sample air (and tracer gas when confronted with a leak) at atmospheric pressure and to bring it into the mass spectrometer. This mode of operationis frequently used to localise leakage that have been detected by other methods, in order to allow for parts repair. See also
Categories: Mass spectrometry | Spectrometers |
|||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Helium_mass_spectrometer". A list of authors is available in Wikipedia. |