My watch list
my.chemeurope.com  
Login  

Glycoside hydrolase



  Glycoside hydrolases (also called glycosidases) catalyze the hydrolysis of the glycosidic linkage to generate two smaller sugars. They are extremely common enzymes with roles in nature including degradation of biomass such as cellulose and hemicellulose, in anti-bacterial defense strategies (eg lysozyme), in pathogenesis mechanisms (eg viral neuraminidases) and in normal cellular function (eg trimming mannosidases involved in N-linked glycoprotein biosynthesis). Together with glycosyltransferases, glycosidases form the major catalytic machinery for the synthesis and breakage of glycosidic bonds.


Contents

Occurrence and importance

Glycoside hydrolases are found in essentially all domains of life. In bacteria and prokaryotes, they are found both as intracellular and extracellular enzymes largely involved in nutrient acquisition. One of the important occurrences of glycoside hydrolases in bacteria is the enzyme beta-galactosidase (LacZ), which is involved in regulation of expression of the lac operon in E. coli. In higher organisms glycoside hydrolases are found within the endoplasmic reticulum and Golgi apparatus where they are involved in processing of N-linked glycoproteins, and in the lysozome as enzymes involved in the degradation of carbohydrate structures. Deficiency in specific lysozomal glycoside hydrolases can lead to a range of lysosomal storage disorders that result in developmental problems or death. Glycoside hydrolases are found in the intestinal tract and in saliva where they degrade complex carbohydrates such as lactose, starch, sucrose and trehalose. In the gut they are found as glycosylphosphatidyl anchored enzymes on endothelial cells. The enzyme lactase is required for degradation of the milk sugar lactose and is present at high levels in infants, but in most populations will decrease after weaning or during infancy, potentially leading to lactose intolerance in adulthood. The enzyme O-GlcNAcase is involved in removal of N-acetylglucoamine groups from serine residues in the cytoplasm and nucleus of the cell. The glycoside hydrolases are involved in the biosynthesis and degradation of glycogen in the body.

Classification

Glycoside hydrolases are classified into EC 3.2.1 as enzymes catalyzing the hydrolysis of O- or S-glycosides. Glycoside hydrolases can also be classified according to the stereochemical outcome of the hydrolysis reaction: thus they can be classified as either retaining or inverting enzymes.[1] Glycoside hydrolases can also be classified as exo or endo acting, dependent upon whether they act at the (usually non-reducing) end or in the middle, respectively, of an oligo/polysaccharide chain. Glycoside hydrolases may also be classified by sequence based methods.

Sequence-based classification

Sequence-based classifications are among the most powerful predictive method for suggesting function for newly sequenced enzymes for which function has not been biochemically demonstrated. A classification system for glycosyl hydrolases, based on sequence similarity, has led to the definition of 85 different families[2][3][4]. This classification is available on the CAZy(CArbohydrate-Active EnZymes) web site[5]. The database provides a series of regularly updated sequence based classification that allow reliable prediction of mechanism (retaining/inverting), active site residues and possible substrates. Based on three dimensional structural similarities, the sequence-based families have been classified into 'clans' of related structure. Recent progress in glycosidase sequence analysis and 3D structure comparison has allowed the proposal of an extended hierarchical classification of the glycoside hydrolases.[6]

Mechanisms

Inverting glycoside hydrolases

Inverting enzymes utilize two enzymic residues, typically carboxylate residues, that act as acid and base respectively, as shown below for a β-glucosidase:


Retaining glycoside hydrolases

Retaining glycosidases operate through a two-step mechanism, with each step resulting in inversion, for a net retention of stereochemistry. Again, two residues are involved, which are usually enzyme-borne carboxylates. One acts as a nucleophile and the other as an acid/base. In the first step the nucleophile attacks the anomeric centre, resulting in the formation of a glycosyl enzyme intermediate, with acidic assistance provided by the acidic carboxylate. In the second step the now deprotoned acidic carboxylate acts as a base and assists a nucleophilic water to hydrolyze the glycosyl enzyme intermediate, giving the hydrolyzed product. The mechanism is illustrated below for hen egg white lysozyme.[7]


An alternative mechanism for hydrolysis with retention of stereochemistry can occur that proceeds through a nucleophilic residue that is bound to the substrate, rather than being attached to the enzyme. Such mechanisms are common for certain N-acetylhexosaminidases, which have an acetamido group capable of neighboring group participation to form an intermediate oxazoline or oxazolinium ion. Again, the mechanism proceeds in two steps through individual inversions to lead to a net retention of configuration.


Nomenclature and examples

Glycoside hydrolases are typically named after the substrate that they act upon. Thus glucosidases catalyze the hydrolysis of glucosides and xylanases catalyze the cleavage of the xylose based homopolymer xylan. Other examples include lactase, amylase, chitinase, sucrase, maltase, neuraminidase, invertase, hyaluronidase and lysozyme.

Uses

Glycoside hydrolases have a variety of uses including degradation of plant materials (eg cellulases for degrading cellulose to glucose, which can be used for ethanol production), in the food industry (invertase for manufacture of invert sugar, amylase for production of maltodextrins), and in the paper and pulp industry (xylanases for removing hemicelluloses from paper pulp). Cellulases are added to detergents for the washing of cotton fabrics and assist in the maintenance of colours through removing microfibres that are raised from the surface of threads during wear.

In organic chemistry, glycoside hydrolases can be used as synthetic catalysts to form glycosidic bonds through either reverse hydrolysis (kinetic approach) where the equilibrium position is reversed; or by transglycosylation (kinetic approach) whereby retaining glycoside hydrolases can catalyze the transfer of a glycosyl moiety from an activated glycoside to an acceptor alcohol to afford a new glycoside.

Mutant glycoside hydrolases termed glycosynthases have been developed that can achieve the synthesis of glycosides in high yield from activated glycosyl donors such as glycosyl fluorides.

Inhibitors

Mnay compounds are known that can act to inhibit the action of a glycoside hydrolase. A number of nitrogen-containing 'sugar-shaped' heterocycles have been found in nature including deoxynojirimycin, swainsonine, australine and castanospermine. From these natural templates many other inhibitors have been developed including isofagomine and deoxygalactonojirimycin, and various unsaturated compounds such as PUGNAc. Several drugs in clinical use are inhbitors of glycoside hydrolases including acarbose, Relenza (zanamivir), miglitol and Tamiflu (oseltamivir). Some proteins have been fouind to act as glycoside hydrolase inhibitors.

See also

References

  1. ^ Sinnott, M. L. Chem. Rev. 1990, 90, 1171-1202.
  2. ^ Henrissat B, Callebaut I, Mornon JP, Fabrega S, Lehn P, Davies G (1995). "Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases". Proc. Natl. Acad. Sci. U.S.A. 92 (15): 7090-7094. PMID 7624375.
  3. ^ Henrissat B, Davies G (1995). "Structures and mechanisms of glycosyl hydrolases". Structure 3 (9): 853-859. PMID 8535779.
  4. ^ Bairoch A (1999). "Classification of glycosyl hydrolase families and index of glycosyl hydrolase entries in SWISS-PROT": -.
  5. ^ Henrissat B, Coutinho PM (1999). "Carbohydrate-Active Enzymes server": -.
  6. ^ Naumoff, D.G. Proceedings of the Fifth International Conference on Bioinformatics of Genome Regulation and Structure. 2006, 1, 294-298.
  7. ^ Vocadlo, D. J.; Davies, G. J.; Laine, R.; Withers, S. G. Nature 2001, 412, 835.
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Glycoside_hydrolase". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE