My watch list
my.chemeurope.com  
Login  

Soybean



Soybean

Scientific classification
Kingdom: Plantae
Phylum: Magnoliophyta
Class: Magnoliopsida
Order: Fabales
Family: Fabaceae
Subfamily: Faboideae
Genus: Glycine
Species: G. max
Binomial name
Glycine L. max
(L.) Merr.
Soybean, green raw
Nutritional value per 100 g (3.5 oz)
Energy 30 kcal   130 kJ
Carbohydrates     5.94 g
- Sugars  4.13 g
- Dietary fiber  1.8 g  
Fat0.18 g
- saturated  0.046 g
- monounsaturated  0.022 g  
- polyunsaturated  0.058 g  
Protein 3.04 g
Water90.4 g
Vitamin A equiv.  1 μg 0%
Vitamin B6  0.088 mg7%
Vitamin B12  0 μg  0%
Vitamin C  13.2 mg22%
Vitamin K  33 μg31%
Calcium  13 mg1%
Iron  0.91 mg7%
Magnesium  21 mg6% 
Phosphorus  54 mg8%
Potassium  149 mg  3%
Sodium  6 mg0%
Zinc  0.41 mg4%
Percentages are relative to US
recommendations for adults.
Source: USDA Nutrient database

The soybean (U.S.) or soya bean (UK) (Glycine max) is a species of legume native to East Asia. It is an annual plant that may vary in growth, habit, and height. It may grow prostrate, not growing higher than 20 cm (7.8 inches), or even stiffly erect up to 2 meters (6.5 feet) in height. The pods, stems, and leaves are covered with fine brown or gray pubescence. The leaves are trifoliolate, having 3 leaflets per leaf, and the leaflets are 6–15 cm (2–6 inches) long and 2–7 cm (1–3 inches) broad. The leaves fall before the seeds are mature. The small, inconspicuous, self-fertile flowers are borne in the axil of the leaf and are white, pink or purple. The fruit is a hairy pod that grows in clusters of 3–5, with each pod 3–8 cm (1–3 inches) long and usually containing 2–4 (rarely more) seeds 5–11 mm in diameter.

Like some other crops of long domestication, the relationship of the modern soybean to wild-growing species can no longer be traced with any degree of certainty. It is a cultural variety (a cultigen) with a very large number of cultivars. However, it is known that the progenitor of the modern soybean was a vine-like plant that grew prone on the ground.

The genus Glycine Willd. is divided into two subgenera(species), Glycine and Soja. The subgenus Soja(Moench) includes the cultivated Soybean, G. max(L.)Merrill, and the wild soybean, G. soja Sieb.& Zucc. Both species are annual. The soybean grows only under cultivation while G. soja grows wild in China, Japan, Korea, Taiwan and Russia. Glycine soja is the wild ancestor of the soybean: the wild progenitor. At present, the subgenus Glycine consists of at least 16 wild perennial species: for example, Glycine canescens, and G. tomentella Hayata found in Australia and Papua New Guinea [1]

Beans are classed as pulses whereas soybeans are classed as oilseeds. It is a versatile bean, having a diverse range of uses.

The English word soy is derived from the Japanese pronunciation of 醤油 (しょうゆ, shōyu), the Japanese word for soy sauce; soya comes from the Dutch adaptation of the same word. 醤油 (醬油 (菽) in traditional Chinese) is itself a word of Chinese origin.[2][3]

Contents

Physical characteristics

Soybeans occur in various sizes, and in several hull or seed coat colors, including black, brown, blue, yellow, and mottled. The hull of the mature bean is hard, water resistant, and protects the cotyledon and hypocotyl (or "germ") from damage. If the seed coat is cracked the seed will not germinate. The scar, visible on the seed coat, is called the hilum (colors include black, brown, buff, gray and yellow) and at one end of the hilum is the micropyle, or small opening in the seed coat which can allow the absorption of water.

Remarkably, seeds such as soybeans containing very high levels of protein can undergo desiccation yet survive and revive after water absorption. A. Carl Leopold, son of Aldo Leopold, began studying this capability at the Boyce Thompson Institute for Plant Research at Cornell University twenty years ago (mid 1980s). He found soybeans and corn to have a range of soluble carbohydrates protecting the seed's cell viability.[4] Patents were awarded to him in the early 1990s on techniques for protecting "biological membranes" and proteins in the dry state. Compare to tardigrades.

Leopold's research on soybeans led to techniques that allowed insulin to be dried and processed into an inhalable insulin.

Chemical composition of the seed

The oil and protein content together account for about 60% of dry soybeans by weight; protein at 40% and oil at 20%. The remainder consists of 35% carbohydrate and about 5% ash. Soybean cultivars comprise approximately 8% seed coat or hull, 90% cotyledons and 2% hypocotyl axis or germ.

The majority of soy protein is a relatively heat-stable storage protein. This heat stability enables soy food products requiring high temperature cooking, such as tofu, soymilk and textured vegetable protein (soy flour) to be made.

The principal soluble carbohydrates, saccharides, of mature soybeans are the disaccharide sucrose (range 2.5–8.2%), the trisaccharide raffinose (0.1–1.0%) composed of one sucrose molecule connected to one molecule of galactose, and the tetrasaccharide stachyose (1.4 to 4.1%) composed of one sucrose connected to two molecules of galactose. While the oligosaccharides raffinose and stachyose protect the viability of the soybean seed from desiccation (see above section on physical characteristics) they are not digestible sugars and therefore contribute to flatulence and abdominal discomfort in humans and other monogastric animals; compare to the disaccharide trehalose. Undigested oligosaccharides are broken down in the intestine by native microbes producing gases such as carbon dioxide, hydrogen, nitrogen, methane, etc.

Since soluble soy carbohydrates are found mainly in the whey and are broken down during fermentation, soy concentrate, soy protein isolates, tofu, soy sauce, and sprouted soybeans are without flatus activity. On the other hand, there may be some beneficial effects to ingesting oligosaccharides such as raffinose and stachyose, namely, encouraging indigenous bifidobacteria in the colon against putrefactive bacteria.

The insoluble carbohydrates in soybeans consist of the complex polysaccharides cellulose, hemicellulose, and pectin. The majority of soybean carbohydrates can be classed as belonging to dietary fiber.

Cultivation

 

Soybeans are an important global crop, providing oil and protein. The bulk of the crop is solvent-extracted for vegetable oil and then defatted soy meal is used for animal feed. A small proportion of the crop is consumed directly by humans. Soybean products do appear in a large variety of processed foods.

Soybeans were a crucial crop in eastern Asia long before written records, and they remain a major crop in China, Japan, and Korea . Prior to fermented products such as soy sauce, tempeh, natto, and miso, soy was considered sacred for its use in crop rotation as a method of fixing nitrogen. The plants would be plowed under to clear the field for food crops.[citation needed] Soy was first introduced to Europe in the early 1700s and the United States in 1765, where it was first grown for hay. Benjamin Franklin wrote a letter in 1770 mentioning sending soybeans home from England. Soybeans did not become an important crop outside of Asia until about 1910. In America, soy was considered an industrial product only and not utilized as a food prior to the 1920s. Soy was introduced in Africa from China in the late 19th Century and is now widespread across the continent.

Cultivation is successful in climates with hot summers, with optimum growing conditions in mean temperatures of 20 °C to 30 °C (68°F to 86°F); temperatures of below 20 °C and over 40 °C (68 °F, 104 °F) retard growth significantly. They can grow in a wide range of soils, with optimum growth in moist alluvial soils with a good organic content. Soybeans, like most legumes, perform nitrogen fixation by establishing a symbiotic relationship with the bacterium Bradyrhizobium japonicum (syn. Rhizobium japonicum; Jordan 1982). However, for best results an inoculum of the correct strain of bacteria should be mixed with the soybean (or any legume) seed before planting. Modern crop cultivars generally reach a height of around 1 m (3 ft), and take 80–120 days from sowing to harvesting.

Top Soybean Producers
in 2005
(million metric tons)
 United States 83.9
 Brazil 52.7
 Australia 44.7
 Argentina 38.3
 China 17.4
 India 6.6
 Paraguay 3.5
 Canada 3.0
 Bolivia 1.7
World Total 214.3
Source:
UN Food & Agriculture Organisation
(FAO)
[1]

Soybeans are native to east Asia, but 45 percent of the world's soybean area, and 55 percent of production, is in the United States. The U.S. produced 75 million metric tons of soybeans in 2000, of which more than one-third was exported. Other leading producers are Brazil, Australia, Argentina, China, and India.

Environmental groups, such as Greenpeace and the WWF, have reported that both soybean cultivation and the probability of increased soybean cultivation in Brazil, has destroyed huge areas of Amazon rainforest and is encouraging further deforestation. American soil scientist Dr. Andrew McClung, who first showed that the infertile Cerrado region of Brazil could grow soybeans, was awarded the 2006 World Food Prize on October 19, 2006.[5]

The first research on soybeans in the United States was conducted by George Washington Carver at Tuskegee, Alabama, but he decided it was too exotic a crop for the poor black farmers of the South so he turned his attention to peanuts. Peanuts, soybeans, or other legume plants that would replenish the soil with nitrogen and minerals were planted for two years and then cotton on the third year. A two year rotation system alternating maize instead is also a possibility.

Production history

  In 2853 BC the legendary Emperor Shennong of China named five sacred plants – soybeans, rice, wheat, barley, and millet. It is likely that soybean plants were domesticated between 17th and 11th century BC in the eastern half of China and in Korea where they were cultivated into a food crop.[6] Ancient Chinese documents state that soybean agriculture began during the Zhou Dynasty in 664 BC and was introduced to the Zhou heartland from the Manchuria Plain.[7] Archaeologists recovered soybean from a site in Jilin Province and dated charcoal associated with the legume to cal. 900–520 BC.

According to absolute dating methods (i.e. radiocarbon dating), the earliest soybeans were unearthed from archaeological sites in Korea[8][9]. AMS radiocarbon dating on soybean recovered through flotation during excavations at the Early Mumun Period Okbang site in Korea indicates that soybean was cultivated as a food crop in ca. 1000–900 BC. [10]. The best current evidence on the Japanese Archipelago suggests that soybean cultivation occurred in the early Yayoi period.

From about the first century AD to the Age of Discovery (15-16th century), soybeans were introduced into several countries such as Japan, Indonesia, the Philippines, Vietnam, Thailand, Malaysia, Burma, Nepal and India. The spread of the soybean was due to the establishment of sea and land trade routes. The earliest Japanese textual reference to the soybean is in the classic Kojiki (Records of Ancient Matters) which was completed in 712 AD.

Many people have claimed that soybeans in Asia, prior to modern times, were only used after a fermentation process, which alters the high increase in phytoestrogens found in the raw plant. However, this appears to be incorrect: Terms similar to "soy milk" have been in use since 82 AD [2], and there is evidence of tofu consumption that dates to 220.[3]

The genus name Glycine was originally introduced by Linnaeus(1737) in his first edition of Genera Plantarum. The word glycine is derived from the Greek-glykys(sweet)- and very likely refers to the sweetness of the pear-shaped(apios in Greek) edible tubers produced by the native North American twining or climbing herbaceous legume, Glycine apios, now known as Apios americana . Some alternative names are: ground nut, American potato bean, wild bean, Indian potato, ground bean, hopniss, and sea vines. The seeds are also edible. It saved the Massachusetts Bay Pilgrims from starvation.[11] The cultivated soybean first appeared in theSpecies Plantarum, Linnaeus, under the name Phaseolus max L. The combination, Glycine max(L.) Merr., as proposed by Merrill in 1917, has become the valid name for this useful plant.

Soybean diseases

Main article: List of soybean diseases

Genetic modification

Soybeans are one of the "biotech food" crops that have been genetically modified, and GM soybeans are being used in an increasing number of products. In 1995 Monsanto introduced Roundup Ready (RR) soybeans that have had a copy of a gene from the bacterium, Agrobacterium sp. strain CP4, inserted into its genome by means of a gene gun, that allows the transgenic plant to survive being sprayed by this non-selective herbicide, Roundup. Glyphosate, the active ingredient in Roundup, kills conventional soybeans. The bacterial gene is EPSP (5-enolpyruvyl shikimic acid-3-phosphate) synthase. Soybeans also have a version of this gene, but the soybean version is sensitive to glyphosate, while the CP4 version is not.[12]

RR soybeans allow a farmer to spray widely the herbicide Roundup and so to reduce tillage or even to sow the seed directly into an unplowed field, known as no-till farming or conservation tillage. No-till agriculture has many advantages, greatly reducing soil erosion and creating better wildlife habitat;[13] it also saves fossil fuels and sequesters CO2, a greenhouse effect gas.[14] It should be noted that RR soybeans simplify the process, but are not a requirement for no-till agriculture. Roundup may be sprayed on the field (and weeds) before the non-RR soybeans have emerged from the soil.

In 1997, about 8% of all soybeans cultivated for the commercial market in the United States were genetically modified. In 2006, the figure was 89%. As with other "Roundup Ready" crops, concern is expressed over damage to biodiversity.[15] However, the RR gene has been bred into so many different soybean cultivars that the genetic modification itself has not resulted in any decline of genetic diversity, as demonstrated by a study on genetic diversity[16]

The ubiquitous use of such types of GM soybeans in the Americas has caused problems with exports to some regions. GM crops require extensive certification before they can be legally imported into the European Union, where there is extensive supplier and consumer reluctance to use GM products for consumer or animal use. Difficulties with coexistence and subsequent traces of cross-contamination of non-GM stocks have caused shipments to be rejected and have put a premium on non-GM soy.[17]

Uses

Soybeans can be broadly classified as "vegetable" (garden) or field (oil) types. Vegetable types cook more easily, have a mild nutty flavor, better texture, are larger in size, higher in protein, and lower in oil than field types. Tofu and soymilk producers prefer the higher protein cultivars bred from vegetable soybeans originally brought to the United States in the late 1930s. The "garden" cultivars are generally not suitable for mechanical combine harvesting because they have a tendency for the pods to shatter on reaching maturity.

Among the legumes, the soybean, also classed as an oilseed, is pre-eminent for its high (38–45%) protein content as well as its high (20%) oil content. Soybeans are the leading agricultural export in the United States. The bulk of the soybean crop is grown for oil production, with the high-protein defatted and "toasted" soy meal used as livestock feed. A smaller percentage of soybeans are used directly for human consumption.

Immature soybeans may be boiled whole in their green pod and served with salt, under the Japanese name edamame (枝豆 edamame?). Soybeans prepared this way are a popular local snack in Hawaii, and are becoming increasingly popular in the continental United States. Because of the proclaimed health benefits of soy, edamame has been featured as an ideal snack alternative in fitness and healthy living magazines such as Real Simple. Edamame is sold in the frozen vegetable section at some larger grocery stores, and as ready-to-eat snackfood in many Asian delis.

In China, Japan, and Korea the bean and products made from the bean are a popular part of the diet. Japanese foods made from soya include: miso (味噌), natto (納豆), tofu (豆腐) and edamame (枝豆). In Korean cuisine, soybean sprouts, called kongnamul (hangul:콩나물) are also used in a variety of dishes such as doenjang, cheonggukjang and ganjang.

The beans can be processed in a variety of ways. Common forms of soy (or soya) include soy meal, soy flour, soy milk, tofu, textured vegetable protein (TVP, which is made into a wide variety of vegetarian foods, some of them intended to imitate meat), tempeh, soy lecithin and soybean oil. Soybeans are also the primary ingredient involved in the production of soy sauce (or shoyu).

   

Archer Daniels Midland (ADM) is among the largest processors of soybeans and soy products. ADM along with Dow Chemical Company, DuPont and Monsanto support the industry trade associations United Soybean Board (USB) and Soyfoods Association of North America (SANA). These trade associations have increased the consumption of soy products dramatically in recent years.

Oil

In processing soybeans for oil extraction and subsequent soy flour production, selection of high quality, sound, clean, dehulled yellow soybeans is very important. Soybeans having a dark colored seed coat, or even beans with a dark hilum will inadvertently leave dark specks in the flour, are undesirable for use in commercial food products. All commercial soybeans in the United States are yellow or yellow brown.

To produce soybean oil, the soybeans are cracked, adjusted for moisture content, rolled into flakes and solvent-extracted with commercial hexane. The oil is then refined, blended for different applications, and sometimes hydrogenated. Soybean oils, both liquid and partially hydrogenated, are exported abroad, sold as "vegetable oil," or end up in a wide variety of processed foods. The remaining soybean husks are used mainly as animal feed.

The major unsaturated fatty acids in soybean oil triglycerides are 7% linolenic acid (C18:3); 51% linoleic acid (C-18:2); and 23% oleic acid(C-18:1). It also contains the saturated fatty acids 4%stearic acid and 10% palmitic acid.

Soybean oil has a relatively high proportion, 7–10%, of oxidation prone linolenic acid, which is an undesirable property for continuous service, such as in a restaurant. In the early nineties, Iowa State University developed soybean oil with 1% linolenic acid in the oil. Three companies, Monsanto, DuPont/Bunge, and Asoyia in 2004 introduced low linolenic, (C18:3; cis-9, cis-12, cis-15 octadecatrienoic acid) Roundup Ready soybeans. In the past hydrogenation was used to reduce the unsaturation in linolenic acid, but this produced the unnatural trans-fatty acid trans fat configuration, whereas in nature the configuration is cis. This external picture from North Dakota State University compares soybean oil fatty acid content with other oils.

In the 2002–2003 growing season, 30.6 million metric tons of soybean oil were produced worldwide, constituting about half of worldwide edible vegetable oil production, and thirty percent of all fats and oils produced, including animal fats and oils derived from tropical plants.[18]

Soybean oil has also been found effective as an insect repellent in some studies.[19] [20] The commercial product Bite Blocker contains soybean oil as one active ingredient.

Meal

Main article: Soybean meal

Soybean meal, the material remaining after solvent extraction of soybean flakes, with a 50% soy protein content, toasted (a misnomer because the heat treatment is with moist steam) and ground in a hammer mill, provided the energy for the American revolution, beginning in the 1930s, of growing farm animals such as poultry and swine on an industrial scale; and more recently the aquaculture of catfish.

Flour

Soy flour refers to defatted soybeans where special care was taken during desolventizing (not toasted) in order to minimize denaturation of the protein to retain a high Nitrogen Solubility Index (NSI), for uses such as extruder texturizing (TVP). It is the starting material for production of soy concentrate and soy protein isolate.

  • Defatted soy flour is obtained from solvent extracted flakes, and contains less than 1% oil.
  • Full-fat soy flour is made from unextracted, dehulled beans, and contains about 18% to 20% oil. Due to its high oil content a specialized Alpine Fine Impact Mill must be used for grinding rather than the more common hammer mill.
  • Low-fat soy flour is made by adding back some oil to defatted soy flour. The lipid content varies according to specifications, usually between 4.5% and 9%.
  • High-fat soy flour can also be produced by adding back soybean oil to defatted flour at the level of 15%.
  • Lecithinated soy flour is made by adding soybean lecithin to defatted, low-fat or high-fat soy flours to increase their dispersibility and impart emulsifying properties. The lecithin content varies up to 15%.

Infant formula

Infant formulas based on soy are used by lactose-intolerant babies and for babies that are allergic to cow milk proteins. The formulas are sold in powdered, ready-to-feed, or concentrated liquid forms.

It has been recommended internationally by pediatric associations that soy formulas not be used as the primary or sole source of nutrition for infants due to the high risk of several deficiencies, including calcium and zinc.[citation needed] Some studies have also indicated that soy may act similarly to the hormone estrogen in developing infants, but no hormonal effects have been found on long term feeding of such formulas. [21]

In July of 1996, the British Department of Health issued a warning that the phytoestrogens found in soy-based infant formulas could adversely affect infant health.[citation needed] The warning was clear, indicating that soy formula should only be given to babies on the advice of a health professional. They advised that babies who cannot be breastfed or who have allergies to other formulas be given alternatives to soy-based formulas.[citation needed]

Nut butter

Soybeans have been made into a spread called soynut butter, similar to peanut butter but with soybeans instead. It is less fattening than peanut butter.

Substitute for existing products

 

Processed soybeans are the primary ingredient in many imitation foods, including dairy products (e.g., margarine, soy ice cream, soy milk, soy yogurt, soy cheese and soy cream cheese), as well as Crisco, soybean oil, tofu, veggie burgers, soy crisps, among others. These products are derived from extensive processing to produce a texture and appearance similar to conventional foods (e.g., butter, ice cream, milk, yogurt, cheese, lard, olive oil, ground beef, potato chips, etc.) and are readily available in most supermarkets. Soy milk does not contain significant amounts of calcium, since the high calcium content of soybeans is bound to the insoluble constituents and remains in the pulp. Many manufacturers of soy milk now sell calcium-enriched products as well.

Other products

Soybeans are also used in industrial products including oils, soap, cosmetics, resins, plastics, inks, crayons, solvents, clothing, and biodiesel. Soybeans are also used as fermenting stock to make a brand of vodka.

Henry Ford promoted the soybean, helping to develop uses for it both in food and in industrial products, even demonstrating auto body panels made of soy-based plastics. Ford's interest led to two bushels of soybeans being used in each Ford car as well as products like the first commercial soy milk, ice cream and all-vegetable non-dairy whipped topping. The Ford development of so-called soy-based plastics was based on the addition of soybean flour and wood flour to phenolformaldehyde plastics.

In 1931, Ford hired chemists Robert Boyer and Frank Calvert to produce artificial silk. They succeeded in making a textile fiber of spun soy protein fibers, hardened or tanned in a formaldehyde bath which was given the name Azlon by the Federal Trade Commission. Pilot production of Azlon reached 5000 pounds per day in 1940, but never reached the commercial market.

Today, very high quality textile fibers are made commercially from "okara" (soy pulp), a by-product of tofu production.

Nutrition

Protein, Vitamins, and Minerals

Main article: soy protein

Soybeans are generally considered to be a source of complete protein, without any need for Protein combining.[22] although this is contested by some sources.[23][24] A complete protein is one that contains significant amounts of all the essential amino acids that must be provided to the human body because of the body's inability to synthesize them. For this reason, soy is a good source of protein, amongst many others, for many vegetarians and vegans or for people who cannot afford meat.

The gold standard for measuring protein quality, since 1990, is the Protein Digestibility Corrected Amino Acid Score (PDCAAS) and by this criterion soy protein is the nutritional equivalent of meat and eggs for human growth and health. Soybean protein isolate has a Biological Value of 74, whole soybeans 96, soybean milk 91, and eggs 97.[25]

Soy protein is similar to that of other legume seeds, but has the highest yield per square meter of growing area, and is the least expensive source of dietary protein.

  Consumption of soy may also reduce the risk of colon cancer, possibly due to the presence of sphingolipids.[26]

The role of soyfoods in disease prevention

Omega-3 fatty acids

Omega-3 fatty acids, for example, linolenic acid C18-3, all cis, 9,12,15 octadecatrienoic acid (where the omega-3 refers to carbon number 3 counting from the hydrocarbon tail whereas C-15 refers to carbon number 15 counting from the carboxyl acid head) are special fat components that benefit many body functions. However, the effects which are beneficial to health are associated mainly with the longer-chain, more unsaturated fatty acids eicosapentaenoic (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) found in fish oil and oily fish. For instance, EPA and DHA, inhibit blood clotting, while there is no evidence that alpha-linolenic acid (aLNA) can do this. Soybean oil is one of the few common vegetable oils that contains a significant amount of aLNA; others include canola, walnut, and flax. However, soybean oil does not contain EPA or DHA. Soybean oil does contain significantly greater amount of omega-6 fatty acids in the oil: 100g of soybean oil contains 7g of omega-3 fatty acids to 51g of omega-6: a ratio of 1:7. Flaxseed, in comparison, has an omega-3:omega-6 ratio of 3:1 which may inhbit conversion of aLNA to the biologically active forms EPA and DHA, which is at best limited in humans anyway.

Isoflavones

Main article: Isoflavone

Soybeans also contain the isoflavones genistein and daidzein, types of phytoestrogen, that are considered by some nutritionists and physicians to be useful in the prevention of cancer and by others to be carcinogenic and endocrine disruptive. Soy's high levels of isoflavone phytoestrogens, being up to 3mg/g dry weight, are the subject of heated debate and controversy. They are also blamed for some thyroid and reproductive health problems.[citation needed]

Isoflavones are polyphenol compounds, produced primarily by beans and other legumes, including peanuts and chickpeas. Although isoflavones are closely related to the antioxidant flavonoids found in plants, vegetables and flowers, isoflavones such as genistein and daidzein are found in very few plant families. This is because of the restricted distribution of the enzyme, chalcone isomerase which converts a flavone precursor into an isoflavone, to tropical legumes.

Claims of cholesterol reduction

The dramatic increase in soyfood sales is largely credited to the Food and Drug Administration's (FDA) approval of health claims for soy in which studies are conflicting as to their cholesterol lowering ability.[27]

From 1992 to 2003, sales have experienced a 15% compound annual growth rate, increasing from $300 million to $3.9 billion over 11 years, as new soyfood categories have been introduced, soyfoods have been repositioned in the market place, thanks to a better emphasis on marketing nutrition.

In 1995, the New England Journal of Medicine (Vol. 333, No. 5) published a report from the University of Kentucky entitled, "Meta-Analysis of the Effects of Soy Protein Intake on Serum Lipids." It was financed by the PTI division of DuPont,"The Solae Co."[28] St. Louis, Missouri, a soy producer and marketer. This meta-analysis concluded that soy protein is correlated with significant decreases in serum cholesterol, Low Density Lipoprotein LDL (bad cholesterol) and triglyceride concentrations. However, High Density Lipoprotein HDL(good cholesterol) did not increase by a significant amount. Soy phytoestrogens (isoflavones: genistein and daidzein) adsorbed onto the soy protein were suggested as the agent reducing serum cholesterol levels. On the basis of this research PTI, in 1998, filed a petition with FDA for a health claim that soy protein may reduce cholesterol and the risk of heart disease. It should be noted that only subjects with serum cholesterol of 250mg/dl and higher showed any improvement in the study.

The FDA granted this health claim for soy: "25 grams of soy protein a day, as part of a diet low in saturated fat and cholesterol, may reduce the risk of heart disease." One serving, (1 cup or 240 mL) of soy milk, for instance, contains 6 or 7 grams of soy protein. Solae resubmitted their original petition, asking for a more vague health claim, after their original was challenged and highly criticized. Solae also submitted a petition for a health claim that soy can help prevent cancer. They quickly withdrew the petition for lack of evidence and after more than 1,000 letters of protest were received.

In January, 2006 an American Heart Association review (in the journal Circulation) of a decade long study of soy protein benefits casts doubt on the FDA allowed "Heart Healthy" claim for soy protein. This review of the literature compared soy protein and its component isoflavones with casein (isolated milk protein), wheat protein, and mixed animal proteins.[29] The review panel also found that soy isoflavones have not been shown to reduce post menopause "hot flashes" in women and the efficacy and safety of isoflavones to help prevent cancers of the breast, uterus or prostate is in question. Thus, soy isoflavone supplements in food or pills is not recommended. Among the conclusions the authors state, "In contrast, soy products such as tofu, soy butter, soy nuts, or some soy burgers should be beneficial to cardiovascular and overall health because of their high content of polyunsaturated fats, fiber, vitamins, and minerals and low content of saturated fat. Using these and other soy foods to replace foods high in animal protein that contain saturated fat and cholesterol may confer benefits to cardiovascular health."[30] The original paper is in the journal Circulation: January 17, 2006.[31]

Soy controversy

Main article: Soy controversy
Main article: Soybean wars of Paraguay
Main article: Phytoestrogens
Further information: Soy allergy

References

  1. ^ http://www.nsrl.uiuc.edu/news/nsrl_pubs/sbr1995/ArticleID.pdf
  2. ^ soy, n.¹ The Oxford English Dictionary: Second Edition. 1989. Accessed December 14, 2007.
  3. ^ soya, n. The Oxford English Dictionary: Second Edition. 1989. Accessed December 14, 2007.
  4. ^ Blackman, SA; Obendorf RL, Leopold AC (Sept 1992). "Maturation Proteins and Sugars in Desiccation Tolerance of Developing Soybean Seeds" (1.2M PDF, or scanned pages). Plant Physiol. 100 (1): 225–30. Full text at PMC: 1075542. Retrieved on 2006-10-21.
  5. ^ Lang, Susan. "Cornell alumnus Andrew Colin McClung reaps 2006 World Food Prize", Cornell University, 2006-06-21. Retrieved on 2006-10-21. 
  6. ^ Crawford, Gary W. and Gyoung-Ah Lee 2003. Agricultural Origins in the Korean Peninsula. Antiquity 77(295):87-95: T. Hymowitz, T. 1970 "On the Domestication of the Soybean" Economic Botany 24: 408-421.
  7. ^ Ho, Ping-ti 1977. The Indigenous Origins of Chinese Agriculture. In The Origins of Agriculture, edited by C.A. Reed, pp. 413-484. Mouton, Chicago.
  8. ^ Crawford, Gary W. 2006. East Asian Plant Domestication. In Archaeology of East Asia, edited by Miriam Stark. Blackwell, Oxford, pp. 81.
  9. ^ Crawford and Lee 2003
  10. ^ Crawford and Lee 2003:90
  11. ^ http://www.bio.umass.edu/biology/conn.river/groundnt.html
  12. ^ Padgette SR, Kolacz KH, Delannay X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholz DA, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451-1461
  13. ^ Conservation Technology Information Center, http://www.conservationinformation.org/
  14. ^ Brookes G and Barfoot P (2005) GM crops: The global economic and environmental impact—the first nine years 1996–2004. AgBioForum 8:187-195
  15. ^ Liu, KeShun (1997-05-01). Soybeans : Chemistry, Technology, and Utilization (Hardcover), Springer, 532. ISBN 0-8342-1299-4. 
  16. ^ Sneller CH (2003) Impact of transgenic genotypes and subdivision on diversity within elite North American soybean germplasm. Crop Sci 43:409-414.
  17. ^ EU caught in quandary over GMO animal feed imports The Guardian, 7 December 2007
  18. ^ United States Department of Agriculture, Agricultural Statistics 2004. Table 3-51.
  19. ^ Barnard, D.R. and R. Xue. 2004. Laboratory evaluation of mosquito repellents against Aedes albopictus, Culex nigripalpus, and Ochlerotatus triseriatus (Diptera: Culicidae). J. Med. Entomol. 41(4):726-730.
  20. ^ Fradin, M.S. and J.F. Day. 2002. Comparative efficacy of insect repellents against mosquito bites. N. Engl. J. Med. 347:13-18.
  21. ^ PMID 15055353
  22. ^ http://www.truestarhealth.com/members/cm_archives12ML3P1A8.html The Scoop on Protein Powders By Sofia Segounis, Nutritionist
  23. ^ THE DOWNSIDE OF SOYBEAN CONSUMPTION
  24. ^ Protein Means Power and a Whole Lot More
  25. ^ Protein Quality-Report of Joint FAO’/WHO Expert Consultation, Food and Agriculture Organisation, Rome, FAO Food and Nutrition Paper 51, 1991.
  26. ^ Symolon H, Schmelz E, Dillehay D, Merrill A (2004). "Dietary soy sphingolipids suppress tumorigenesis and gene expression in 1,2-dimethylhydrazine-treated CF1 mice and ApcMin/+ mice.". J Nutr 134 (5): 1157-61. PMID 15113963.
  27. ^ Cornell University Food and Brand Lab Article
  28. ^ The Solae Company
  29. ^ Protein, Isoflavones, and Cardiovascular Health: An American Heart Association Science Advisory for Professionals From the Nutrition Committee -- Sacks et al. 113 (7): 1034 -- Circulation
  30. ^ Soy Protein, Isoflavones, and Cardiovascular Health: An American Heart Association Science Advisory for Professionals From the Nutrition Committee -- Sacks et al. 113 (7): 1034 -- Circulation
  31. ^ Soy Protein, Isoflavones, and Cardiovascular Health. An American Heart Association Science Advisory for Professionals From the Nutrition Committee -- Sacks et al., 10.1161/CIRCULATIONAHA.106.171052 -- Circulation
Advocacy and nutritional information
  • IITA has CGIAR global mandate for Soybean research for development
  • International Institute of Tropical Agriculture
  • United Soybean Board
  • American Soybean Association
  • Cornell University Food and Brand Lab
  • Evaluation of Anti-Soy Data and Anti-Soy Advocates
  • Guardian - There's no risk to humans from soya
  • Soy information
  • Soy information at Soyatech
  • Soy Heart healthy claims in dispute
  • Soyinfo Center - SoyaScan database and books
  • Soy Protein Information
Critical
  • AlterNet: Health & Wellness: The Dark Side of Soy
  • Concerns Regarding Soybeans
  • Guardian - Should we worry about soya in our food?
  • Health Canada: Soy - One of the nine most common food allergens
  • Soy Allergy Information Page Asthma and Allergy Foundation of America
  • Soy 'Link' To Male Infertility
  • Soy Online Service This page provides exclusively and solely anti-soy 'facts'
Miscellaneous
  • How to make soy milk (quick guidelines)
  • Soya / Tofu Recipes


 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Soybean". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE