My watch list
my.chemeurope.com  
Login  

Geothermobarometry



Geothermobarometry is the science of measuring the previous pressure and temperature history of a metamorphic or intrusive igneous rocks. Geothermobarometry is a combination of geobarometry, where a pressure of mineral formation is resolved, and geothermometry where a temperature of formation is resolved.

Contents

The method

Geothermobarometry relies upon understanding the temperature of formation of minerals within metamorphic and igneous rocks, and is particularly useful in metamorphic rocks. There are several methods of measuring the temperature or pressure of mineral formation relying on chemical equilibrium between metamorphic minerals or by measuring the chemical composition of individual minerals.

These methods rely on the fact that, for a given mineral the composition of the mineral changes systematically: with temperature; with pressure; and also due to the distribution of component elements between the mineral and other minerals with which it is in contact, such as biotite in the case of garnet in a metamorphic rock.

Data on the geothermometers and geobarometers is derived from both laboratory studies on artificial mineral assemblages, where minerals are grown at known temperatures and pressures and the chemical equilibrium measured directly, and from calibration using natural systems.

For example, one of the best known and most widely applicable geothermometers is the garnet-biotite relationship where the relative proportions of Fe and Mg in garnet and biotite change with increasing temperature, so measurement of the compositions of these minerals to give the Fe-Mg distribution between them allows the temperature of crystallisation to be calculated, given some assumptions.

Assumptions

In natural systems, the chemical reactions occur in open systems with unknown geological and chemical histories, and application of geothermobarometers relies on several assumptions that must hold in order for the laboratory data and natural compositions to relate in a valid fashion:

  • That the full mineralogical assemblage required for the thermobarometer is present. If not all of the minerals of the reaction are present, or did not equilibrate with each other simulatenously, then any pressures and temperatures calculated for the ideal reaction will deviate from those actually experienced by the rock.
  • That chemical equilibrium was achieved to a satisfactory degree. This could be impossible to demonstrate definitively, if the minerals of the thermobarometer assemblage are not all observed in contact with each other.
  • That any minerals in a two-mineral barometer or thermometer grew in equilibrium, which is assumed when the minerals are seen to be in contact.
  • That the mineral assemblage has not been altered by retrograde metamorphism, which can be assessed using an optical microscope in most cases.
  • That certain mineralogical assemblages are present. Without these, the accuracy of a reading may be altered from an ideal, and there may be more error inherent in the measurement.

Example geothermometers

  • Ti-in biotite geothermometer, Henry et al. 2005
  • Fe-Mg exchange between garnet-biotite
  • Ca-in-garnet

See also

References

  • Henry, D. J., Guidotti, C. V. and Thomson, J. A. (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotite: Implications for Geothermometry and Ti-substitution Mechanisms. American Mineralogist, 90, 316-328.
  • Guidotti, C. V., Cheney, J. T. and Henry, D. J. (1988) Compositional variation of biotite as a function of metamorphic reactions and mineral assemblage in the pelitic schists of western Maine: American Journal of Science-Wones Memorial Volume, v. 288A, 270-292.
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Geothermobarometry". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE