To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
Fusion protein
Fusion proteins, also known as chimeric proteins, are proteins created through the joining of two or more genes which originally coded for separate proteins. Translation of this fusion gene results in a single polypeptide with function properties derived from each of the original proteins. Recombinant fusion proteins are be created artificially by recombinant DNA technology for use in biological research or therapeutics. Chimeric mutant proteins occur natually when a large-scale mutation, typically a chromosomal translocation, creates a novel coding sequence containing parts of the coding sequences from two different genes. Naturally occurring fusion proteins are important in cancer, where they may function as oncoproteins. The bcr-abl fusion protein is a well-known example of an oncogenic fusion protein, and is considered to be the primary oncogenic driver of chronic myelogenous leukemia. Additional recommended knowledge
Properties of fusion proteinsThe functionality of fusion proteins is made possible by the fact that many protein functional domains are modular. In other words, the linear portion of a polypeptide which corresponds to a given domain, such as a tyrosine kinase domain, may be removed from the rest of the protein without destroying its intrinsic enzymatic capability. Recombinant fusion proteinsA recombinant fusion protein is a protein created through genetic engineering of a fusion gene. This typically involves removing the stop codon from a cDNA sequence coding for the first protein, then appending the cDNA sequence of the second protein in frame through ligation or overlap extension PCR. That DNA sequence will then be expressed by a cell as a single protein. The protein can be engineered to include the full sequence of both original proteins, or only a portion of either. If the two entities are proteins, often linker (or "spacer") peptides are also added which make it more likely that the proteins fold independently and behave as expected. Especially in the case where the linkers enable protein purification, linkers in protein or peptide fusions are sometimes engineered with cleavage sites for proteases or chemical agents which enable the liberation of the two separate proteins. This technique is often used for identification and purification of proteins, by fusing a GST protein, FLAG peptide, or a hexa-his peptide (aka: a 6xhis-tag) which can be isolated using nickel or cobalt resins (affinity chromatography). Chimeric proteins can also be manufactured with toxins or anti-bodies attached to them in order to study disease development. Chimeric protein drugsSeveral drugs made from chimeric proteins are currently available for medical use. Several chimeric protein dugss are TNFα blockers, such as Etanercept, Infliximab, and Adalimumab. Naturally occurring fusion proteinsNaturally occurring fusion genes are most commonly created when a chromosomal translocation replaces the terminal exons of one gene with intact exons from a second gene. This creates a single gene which can be transcribed, spliced, and translated to produce a functional fusion protein. Many important cancer-promoting oncogenes are fusion genes produced in this way. Examples include:
See also
|
|||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Fusion_protein". A list of authors is available in Wikipedia. |